Home
Class 12
MATHS
If C(0), C(1), C(2),..., C(n) are binom...

If `C_(0), C_(1), C_(2),..., C_(n)` are binomial coefficients
in the expansion of `(1 + x)^(n), ` then the value of
`C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1)` is

A

`(2^(n+1) - 1)/(n+1)`

B

`(2^(n) - 1)/(n)`

C

`(2^(n-1) - 1)/(n - 1)`

D

`(2^(n+1) - 1)/(n + 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \ldots + \frac{C_n}{n+1} \] where \(C_k\) are the binomial coefficients from the expansion of \((1 + x)^n\). ### Step 1: Write the binomial expansion The binomial expansion of \((1 + x)^n\) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n \] where \(C_k = \binom{n}{k}\). ### Step 2: Integrate the expansion To find the required sum, we can integrate the expansion from 0 to 1: \[ \int_0^1 (1 + x)^n \, dx \] ### Step 3: Calculate the integral The integral can be computed as follows: \[ \int (1 + x)^n \, dx = \frac{(1 + x)^{n+1}}{n + 1} + C \] Evaluating this from 0 to 1 gives: \[ \left[ \frac{(1 + x)^{n+1}}{n + 1} \right]_0^1 = \frac{(1 + 1)^{n+1}}{n + 1} - \frac{(1 + 0)^{n+1}}{n + 1} \] This simplifies to: \[ \frac{2^{n+1}}{n + 1} - \frac{1}{n + 1} = \frac{2^{n+1} - 1}{n + 1} \] ### Step 4: Relate the integral to the sum Now, we can express the integral in terms of the binomial coefficients: \[ \int_0^1 (C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n) \, dx = C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \ldots + \frac{C_n}{n + 1} \] ### Step 5: Set the equations equal Thus, we have: \[ C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \ldots + \frac{C_n}{n + 1} = \frac{2^{n+1} - 1}{n + 1} \] ### Final Result Therefore, the value of \[ C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \ldots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n + 1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

If C_(0), C_(1) C_(2) ….., denote the binomial coefficients in the expansion of (1 + x)^(n) , then (C_(0))/(2) - (C_(1))/(3) + (C_(2))/(4)- (C_(3))/(5)+...+ (-1)^(n)(C_(n))/(n+2) =

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .