Home
Class 12
MATHS
The value of lim(x to 0) (log(sin 5x + c...

The value of `lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x)` is equal to

A

`10/3`

B

`20/3`

C

`5/6`

D

`5/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\log(\sin(5x) + \cos(5x))}{\tan(3x)} \), we will follow these steps: ### Step 1: Identify the Form of the Limit First, we substitute \( x = 0 \) into the expression: - \( \sin(5 \cdot 0) + \cos(5 \cdot 0) = \sin(0) + \cos(0) = 0 + 1 = 1 \) - Thus, \( \log(1) = 0 \) - For the denominator, \( \tan(3 \cdot 0) = \tan(0) = 0 \) This gives us the indeterminate form \( \frac{0}{0} \). **Hint:** When you encounter the \( \frac{0}{0} \) form, consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. ### Step 3: Differentiate the Numerator and Denominator We differentiate the numerator and denominator separately: - **Numerator:** \( f(x) = \log(\sin(5x) + \cos(5x)) \) - Using the chain rule: \[ f'(x) = \frac{1}{\sin(5x) + \cos(5x)} \cdot (5\cos(5x) - 5\sin(5x)) = \frac{5(\cos(5x) - \sin(5x))}{\sin(5x) + \cos(5x)} \] - **Denominator:** \( g(x) = \tan(3x) \) - The derivative is: \[ g'(x) = 3\sec^2(3x) \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{5(\cos(5x) - \sin(5x))}{(\sin(5x) + \cos(5x)) \cdot 3\sec^2(3x)} \] ### Step 5: Substitute \( x = 0 \) Now we substitute \( x = 0 \) into the new limit: - The numerator becomes: \[ 5(\cos(0) - \sin(0)) = 5(1 - 0) = 5 \] - The denominator becomes: \[ (\sin(0) + \cos(0)) \cdot 3\sec^2(0) = (0 + 1) \cdot 3 \cdot 1 = 3 \] ### Step 6: Final Calculation Now we can compute the limit: \[ \lim_{x \to 0} \frac{5}{3} = \frac{5}{3} \] ### Conclusion Thus, the value of the limit is: \[ \boxed{\frac{5}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim_(x to 0) (sin x + cos 3x)^(2//x) =

The value of lim_(x to 0) (log (5 + x) - log (5 - x))/(x) equals

lim_(x to 0) (x)/(tan x) is equal to

The value of lim_(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals

The value of lim_(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal to

Evaluate lim_(x to 0) (tan 5x)/(2x)

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(x to 0) (tan x - sin s)/(x^(3)) equals