Home
Class 12
MATHS
If y = 1/x , then the value of (dy)/(sqr...

If `y = 1/x` , then the value of `(dy)/(sqrt(1 + y^4)) + (dx)/(sqrt(1 + x^4)) + 3` is equal to

A

0

B

3

C

4

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ y = \frac{1}{x} \] We need to find the value of the expression: \[ \frac{dy}{\sqrt{1 + y^4}} + \frac{dx}{\sqrt{1 + x^4}} + 3 \] ### Step 1: Differentiate \( y \) First, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \] ### Step 2: Substitute \( dy \) Now, we can express \( dy \) in terms of \( dx \): \[ dy = -\frac{1}{x^2} dx \] ### Step 3: Substitute \( y \) into the expression Next, we substitute \( y = \frac{1}{x} \) into the expression: \[ \frac{dy}{\sqrt{1 + y^4}} = \frac{-\frac{1}{x^2} dx}{\sqrt{1 + \left(\frac{1}{x}\right)^4}} = \frac{-\frac{1}{x^2} dx}{\sqrt{1 + \frac{1}{x^4}}} \] ### Step 4: Simplify the square root Now, simplify the square root: \[ \sqrt{1 + \frac{1}{x^4}} = \sqrt{\frac{x^4 + 1}{x^4}} = \frac{\sqrt{x^4 + 1}}{x^2} \] ### Step 5: Substitute back into the expression Substituting this back into our expression gives: \[ \frac{-\frac{1}{x^2} dx}{\frac{\sqrt{x^4 + 1}}{x^2}} = \frac{-dx}{\sqrt{x^4 + 1}} \] ### Step 6: Substitute \( dx \) Now, substitute this into the original expression: \[ -\frac{dx}{\sqrt{x^4 + 1}} + \frac{dx}{\sqrt{1 + x^4}} + 3 \] Notice that the first two terms are equal and opposite: \[ -\frac{dx}{\sqrt{x^4 + 1}} + \frac{dx}{\sqrt{x^4 + 1}} = 0 \] ### Step 7: Final result Thus, we are left with: \[ 0 + 3 = 3 \] Therefore, the value of the expression is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+z^(2)-2xyz=1 , then the value of (dx)/(sqrt(1-x^(2)))+(dy)/(sqrt(1-y^(2)))+(dz)/(sqrt(1-z^(2))) is equal to………..

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

Solve : (dy)/(dx) sqrt(1+x+y) =x+y-1

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to