Home
Class 12
MATHS
If sum(i=1)^(5) (x(i) - 6) = 5 and sum(i...

If `sum_(i=1)^(5) (x_(i) - 6) = 5` and `sum_(i=1)^(5)(x_(i)-6)^(2) = 25`, then the standard deviation of observations

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard deviation of the observations given the conditions, we can follow these steps: ### Step-by-Step Solution: 1. **Identify Given Information**: - We have two equations: \[ \sum_{i=1}^{5} (x_i - 6) = 5 \] \[ \sum_{i=1}^{5} (x_i - 6)^2 = 25 \] 2. **Determine the Number of Observations (n)**: - The number of observations \( n \) is given as 5 (since \( i \) ranges from 1 to 5). 3. **Calculate the Mean (a)**: - The mean \( a \) is given as 6 (since we are considering \( x_i - 6 \)). 4. **Calculate the Variance**: - The formula for variance \( \sigma^2 \) is: \[ \sigma^2 = \frac{\sum_{i=1}^{n} (x_i - a)^2}{n} - \left(\frac{\sum_{i=1}^{n} (x_i - a)}{n}\right)^2 \] - Substituting the values: - \( \sum_{i=1}^{5} (x_i - 6)^2 = 25 \) - \( n = 5 \) - \( \sum_{i=1}^{5} (x_i - 6) = 5 \) 5. **Substituting into Variance Formula**: - First, calculate the first term: \[ \frac{\sum_{i=1}^{5} (x_i - 6)^2}{n} = \frac{25}{5} = 5 \] - Now calculate the second term: \[ \frac{\sum_{i=1}^{5} (x_i - 6)}{n} = \frac{5}{5} = 1 \] - Now square the second term: \[ \left(\frac{\sum_{i=1}^{5} (x_i - 6)}{n}\right)^2 = 1^2 = 1 \] 6. **Final Calculation of Variance**: - Now substitute back into the variance formula: \[ \sigma^2 = 5 - 1 = 4 \] 7. **Calculate the Standard Deviation**: - The standard deviation \( \sigma \) is the square root of the variance: \[ \sigma = \sqrt{\sigma^2} = \sqrt{4} = 2 \] ### Final Answer: The standard deviation of the observations is \( 2 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(1), x_(2), "…......." x_(18) are observation such that sum_(j=1)^(18)(x_(j) -8) = 9 and sum_(j=1)^(18)(x_(j) -8)^(2) = 45 , then the standard deviation of these observations is

If sum_(i=1)^(18)(x_(i) - 8) = 9 and sum_(i=1)^(18)(x_(i) - 8)^(2) = 45 then find the standard deviation of x_(1), x_(2),….x_(18)

If sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

If sum_(i=1)^n(x_i+1)^2=9n and sum_(i=1)^n(x_i-1)^2=5n , then standard deviation of these 'n' observations (x_1) is: (1) 2sqrt(3) (2) sqrt(3) (3) sqrt(5) (4) 3sqrt(2)

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.

For a sample size of 10 observations x_(1), x_(2),...... x_(10) , if Sigma_(i=1)^(10)(x_(i)-5)^(2)=350 and Sigma_(i=1)^(10)(x_(i)-2)=60 , then the variance of x_(i) is

If for a sample size of 10 , sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20 , then the variance is

If sum_(i=1)^(15)x_(i)=45,A=sum_(i=1)^(15)(x_(i)-2)^(2) , B=sum_(i=1)^(15)(x_(i)-3)^(2) and C=sum_(i=1)^(15)(x_(i)-5)^(2) then Statement 1: min(A,B,C)=A Statement 2: The sum of squares of deviations is least when taken from man.

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i) = 20 show the values of n are 5 or 20