Home
Class 12
MATHS
tan^(6)20^(@) - 33tan^(4) 20^(@) + 27 ta...

`tan^(6)20^(@) - 33tan^(4) 20^(@) + 27 tan^(2) 20^(@) + 4=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^6(20^\circ) - 33\tan^4(20^\circ) + 27\tan^2(20^\circ) + 4 = 0 \), we can follow these steps: ### Step 1: Substitute \( x = \tan^2(20^\circ) \) Let \( x = \tan^2(20^\circ) \). Then, we can rewrite the equation in terms of \( x \): \[ x^3 - 33x^2 + 27x + 4 = 0 \] ### Step 2: Use the identity for \( \tan(3\theta) \) We know that: \[ \tan(3\theta) = \frac{3\tan(\theta) - \tan^3(\theta)}{1 - 3\tan^2(\theta)} \] For \( \theta = 20^\circ \), we have \( 3\theta = 60^\circ \) and \( \tan(60^\circ) = \sqrt{3} \). Thus, we can set up the equation: \[ \sqrt{3} = \frac{3\tan(20^\circ) - \tan^3(20^\circ)}{1 - 3\tan^2(20^\circ)} \] ### Step 3: Cross-multiply and simplify Cross-multiplying gives: \[ \sqrt{3}(1 - 3\tan^2(20^\circ)) = 3\tan(20^\circ) - \tan^3(20^\circ) \] Substituting \( x = \tan^2(20^\circ) \) leads to: \[ \sqrt{3}(1 - 3x) = 3\sqrt{x} - x^{3/2} \] ### Step 4: Square both sides Squaring both sides to eliminate the square roots: \[ 3(1 - 3x)^2 = (3\sqrt{x} - x^{3/2})^2 \] ### Step 5: Expand both sides Expanding both sides gives: \[ 3(1 - 6x + 9x^2) = 9x - 6x^2 + x^3 \] This simplifies to: \[ 3 - 18x + 27x^2 = 9x - 6x^2 + x^3 \] ### Step 6: Rearranging the equation Rearranging all terms to one side results in: \[ x^3 - 33x^2 + 27x + 4 = 0 \] ### Step 7: Solve the cubic equation To find the roots of the cubic equation, we can use the Rational Root Theorem or synthetic division. Testing for rational roots, we find that \( x = 1 \) is a root. ### Step 8: Factor the cubic equation Using synthetic division, we can factor the cubic equation: \[ (x - 1)(x^2 - 32x - 4) = 0 \] ### Step 9: Solve the quadratic equation Now, we can solve the quadratic equation \( x^2 - 32x - 4 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{32 \pm \sqrt{1024 + 16}}{2} = \frac{32 \pm \sqrt{1040}}{2} \] This simplifies to: \[ x = 16 \pm 2\sqrt{65} \] ### Step 10: Substitute back to find \( \tan^2(20^\circ) \) Since \( x = \tan^2(20^\circ) \), we can now find the values of \( \tan^2(20^\circ) \) and, consequently, \( \tan(20^\circ) \). ### Final Result The original equation evaluates to: \[ \tan^6(20^\circ) - 33\tan^4(20^\circ) + 27\tan^2(20^\circ) + 4 = 7 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

tan 70^(@) -tan 20^(@) - 2 tan 40^(@) = 4 tan 10 ^(@).

Prove that tan 70^(@) - tan 20^(@) - 2 tan 40^(@) = 4 tan 10^(@) .

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

Prove that : tan 70^(@) = tan 20^(@) + 2 tan 50^(@)

The value of (tan^(2)20^(@)-sin^(2)20^(@))/(tan^(2)20^(@).sin^(2)20^(@)) is

If 2a=2tan10^(@)+tan50^(@), 2b=tan20^(@)+tan50^(@) 2c=2tan10^(@)+tan70^(@), 2d=tan20^(@)+tan70^(@) Then which of the following is/are correct ?

Prove that tan 70^(@) = "tan " 20^(@) + 2"tan " 50^(@)

sec^(2)(20)-tan^(2)(20) is

Prove that tan 9^(@) - tan 27^(@) -tan 63^(@) + tan 81^(@) =4

If tan1^(@)tan2^(@)tan3^(@)tan4^(@). . .tan89^(@)=x^(2)-8 , then find the value of x.