Home
Class 12
MATHS
If P(1) = 1 - (w)/2 + (w^2)/4 - (w^3)/(8...

If `P_(1) = 1 - (w)/2 + (w^2)/4 - (w^3)/(8) + ……… oo` and `P_(2) = (1 - omega^2)/2` { where w is non-real root of equation `x^3 = 1`} , then `P_(1)P_(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( P_1 \times P_2 \) where: \[ P_1 = 1 - \frac{\omega}{2} + \frac{\omega^2}{4} - \frac{\omega^3}{8} + \ldots \] \[ P_2 = \frac{1 - \omega^2}{2} \] Here, \( \omega \) is a non-real root of the equation \( x^3 = 1 \). ### Step 1: Finding the value of \( \omega \) The roots of the equation \( x^3 - 1 = 0 \) can be found by factoring: \[ x^3 - 1 = (x - 1)(x^2 + x + 1) = 0 \] The real root is \( x = 1 \). The non-real roots are found by solving \( x^2 + x + 1 = 0 \). Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2} \] Thus, the non-real roots are: \[ \omega = \frac{-1 + i\sqrt{3}}{2}, \quad \omega^2 = \frac{-1 - i\sqrt{3}}{2} \] ### Step 2: Finding \( P_1 \) The series \( P_1 \) is an infinite geometric series where the first term \( a = 1 \) and the common ratio \( r = -\frac{\omega}{2} \). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ P_1 = \frac{1}{1 - \left(-\frac{\omega}{2}\right)} = \frac{1}{1 + \frac{\omega}{2}} = \frac{2}{2 + \omega} \] ### Step 3: Simplifying \( P_1 \) Using the property \( 1 + \omega + \omega^2 = 0 \), we can express \( 2 + \omega \) as: \[ 2 + \omega = 1 - \omega^2 \] Thus, we can rewrite \( P_1 \): \[ P_1 = \frac{2}{1 - \omega^2} \] ### Step 4: Finding \( P_2 \) Given: \[ P_2 = \frac{1 - \omega^2}{2} \] ### Step 5: Calculating \( P_1 \times P_2 \) Now we can find \( P_1 \times P_2 \): \[ P_1 \times P_2 = \left(\frac{2}{1 - \omega^2}\right) \left(\frac{1 - \omega^2}{2}\right) \] The \( 2 \) in the numerator and denominator cancels out, and we have: \[ P_1 \times P_2 = \frac{1 - \omega^2}{1 - \omega^2} = 1 \] ### Final Answer Thus, the value of \( P_1 \times P_2 \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If root3(-1) = -1 , -omega, -omega^(2) , then roots of the equation (x+1)^(3) + 64 =0 are

if 1,omega,omega^2 root of the unity then The roots of the equation (x-1)^3 + 8 = 0 are

If f(x)=(x^(4)+x^(2)+1)/(x^(2)-x+1) , the value of f(omega^(n)) (where 'omega' is the non-real root of the equation z^(3)=1 and 'n' is a multiple of 3), is ……….. .

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega^(2))^(4)= omega

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega- omega^(2))^(6)= 64

If 1 , omega, omega^(2) are cube roots of unity then the value of (3 + 5omega+3omega^(2))^(3) is

If 1, omega, omega^(2) are three cube roots of unity, prove that (1)/(1 + omega) + (1)/(1+ omega^(2))=1

If 1 , omega, omega^(2) are cube roots of unity then the value of (5+2omega +5omega^(2))^(3) is