Home
Class 12
MATHS
If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/...

If `y=(1+x)^y+sin^-1(sin^2x)` , then `(dy)/(dx)` at x = 0 is

A

0

B

In 2

C

1

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \(\frac{dy}{dx}\) at \(x = 0\) for the equation: \[ y = (1 + x)^y + \sin^{-1}(\sin^2 x) \] ### Step 1: Evaluate \(y\) at \(x = 0\) First, substitute \(x = 0\) into the equation to find \(y\): \[ y = (1 + 0)^y + \sin^{-1}(\sin^2(0)) \] Calculating each term: - \((1 + 0)^y = 1^y = 1\) - \(\sin^2(0) = 0\) and \(\sin^{-1}(0) = 0\) Thus, we have: \[ y = 1 + 0 = 1 \] ### Step 2: Differentiate both sides with respect to \(x\) Now, differentiate the original equation implicitly with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}((1 + x)^y) + \frac{d}{dx}(\sin^{-1}(\sin^2 x)) \] ### Step 3: Differentiate the first term Using the chain rule and product rule, we differentiate \((1 + x)^y\): Let \(u = (1 + x)^y\). Using logarithmic differentiation: \[ \ln(u) = y \ln(1 + x) \] Differentiating both sides: \[ \frac{1}{u} \frac{du}{dx} = \frac{dy}{dx} \ln(1 + x) + y \frac{1}{1 + x} \] Thus, \[ \frac{du}{dx} = u \left( \frac{dy}{dx} \ln(1 + x) + \frac{y}{1 + x} \right) \] Substituting back \(u = (1 + x)^y\): \[ \frac{du}{dx} = (1 + x)^y \left( \frac{dy}{dx} \ln(1 + x) + \frac{y}{1 + x} \right) \] ### Step 4: Differentiate the second term For the second term \(\sin^{-1}(\sin^2 x)\): Using the chain rule: \[ \frac{d}{dx}(\sin^{-1}(\sin^2 x)) = \frac{1}{\sqrt{1 - \sin^4 x}} \cdot 2\sin x \cos x = \frac{\sin(2x)}{\sqrt{1 - \sin^4 x}} \] ### Step 5: Combine the derivatives Now, we can combine the derivatives: \[ \frac{dy}{dx} = (1 + x)^y \left( \frac{dy}{dx} \ln(1 + x) + \frac{y}{1 + x} \right) + \frac{\sin(2x)}{\sqrt{1 - \sin^4 x}} \] ### Step 6: Solve for \(\frac{dy}{dx}\) Rearranging gives: \[ \frac{dy}{dx} - (1 + x)^y \frac{dy}{dx} \ln(1 + x) = (1 + x)^y \frac{y}{1 + x} + \frac{\sin(2x)}{\sqrt{1 - \sin^4 x}} \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \left( 1 - (1 + x)^y \ln(1 + x) \right) = (1 + x)^{y - 1} y + \frac{\sin(2x)}{\sqrt{1 - \sin^4 x}} \] Thus, \[ \frac{dy}{dx} = \frac{(1 + x)^{y - 1} y + \frac{\sin(2x)}{\sqrt{1 - \sin^4 x}}}{1 - (1 + x)^y \ln(1 + x)} \] ### Step 7: Substitute \(x = 0\) Now substitute \(x = 0\): \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{(1)^{y - 1} \cdot 1 + 0}{1 - (1)^y \cdot 0} = \frac{1}{1} = 1 \] ### Final Answer \[ \frac{dy}{dx} \bigg|_{x=0} = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

If y=x^(sin x), then find (dy)/(dx)

If y=sin^2(x^3) , then dy/dx=

If y=sin^2(x^3) , then dy/dx=

if y=(sin(x+9))/(cosx) , then (dy)/(dx) at x=0 is equal to

(5) If y=sin(x^x) ,then (dy/dx) =

If y=cos ^(-1)sin x , then dy/dx

If y= sin ^-1\ (1)/(sqrt(1+x^2)) then dy/dx at x =0 is :

If y=x^(sin^(-1)x) then finde (dy)/(dx) .