Home
Class 12
MATHS
The domain of the function f(x)=1/(9-x^2...

The domain of the function `f(x)=1/(9-x^2)+log_(20)(x^3-3x)` is

A

`(-sqrt3,0)cup(sqrt(3),oo)`

B

`(-sqrt3,0)cup(sqrt(3),3)`

C

`(-sqrt3,0)cup(3,oo)`

D

`(-sqrt3,0)cup(sqrt(3),3)cup(3,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{9 - x^2} + \log_{20}(x^3 - 3x) \), we need to consider the conditions under which each part of the function is defined. ### Step 1: Analyze the first term \( \frac{1}{9 - x^2} \) The expression \( \frac{1}{9 - x^2} \) is defined as long as the denominator is not zero. Therefore, we need: \[ 9 - x^2 \neq 0 \] This leads to: \[ x^2 \neq 9 \] Taking the square root of both sides gives: \[ x \neq 3 \quad \text{and} \quad x \neq -3 \] ### Step 2: Analyze the second term \( \log_{20}(x^3 - 3x) \) The logarithmic function is defined only for positive arguments. Thus, we require: \[ x^3 - 3x > 0 \] Factoring the expression gives: \[ x(x^2 - 3) > 0 \] This can be further factored as: \[ x(x - \sqrt{3})(x + \sqrt{3}) > 0 \] ### Step 3: Determine the critical points The critical points from the inequality \( x(x - \sqrt{3})(x + \sqrt{3}) = 0 \) are: \[ x = 0, \quad x = \sqrt{3}, \quad x = -\sqrt{3} \] ### Step 4: Test intervals We will test the sign of the expression \( x(x - \sqrt{3})(x + \sqrt{3}) \) in the intervals defined by these critical points: 1. **Interval \( (-\infty, -\sqrt{3}) \)**: Choose \( x = -2 \): \[ (-2)(-2 - \sqrt{3})(-2 + \sqrt{3}) > 0 \quad \text{(positive)} \] 2. **Interval \( (-\sqrt{3}, 0) \)**: Choose \( x = -1 \): \[ (-1)(-1 - \sqrt{3})(-1 + \sqrt{3}) < 0 \quad \text{(negative)} \] 3. **Interval \( (0, \sqrt{3}) \)**: Choose \( x = 1 \): \[ (1)(1 - \sqrt{3})(1 + \sqrt{3}) < 0 \quad \text{(negative)} \] 4. **Interval \( (\sqrt{3}, \infty) \)**: Choose \( x = 2 \): \[ (2)(2 - \sqrt{3})(2 + \sqrt{3}) > 0 \quad \text{(positive)} \] ### Step 5: Combine results From the analysis, we find that \( x(x - \sqrt{3})(x + \sqrt{3}) > 0 \) in the intervals: - \( (-\infty, -\sqrt{3}) \) - \( (\sqrt{3}, \infty) \) ### Step 6: Exclude the points from the first term Now, we need to combine these intervals with the restrictions from the first term: - Exclude \( x = 3 \) and \( x = -3 \) from the domain. The valid intervals for the domain of \( f(x) \) are: 1. From \( (-\infty, -\sqrt{3}) \) (excluding -3) 2. From \( (\sqrt{3}, 3) \) (excluding 3) 3. From \( (3, \infty) \) ### Final Domain Thus, the domain of the function \( f(x) \) is: \[ (-\infty, -\sqrt{3}) \cup (-3, 0) \cup (\sqrt{3}, 3) \cup (3, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(4-x^(2))+log_(10)(x^(2)-x) is

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

Domain of definition of the function f(x)=(9)/(9-x^(2)) +log_(10) (x^(3)-x) , is

Domain of the function f(x)=(1)/(log(2-x)) is

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The domain of the definition of the function f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x) is

Domain of the function f(x) =log_(0.5) (3x-x^(2)-2)

The domain of the function f(x)=log_(3)[1-log_(6)(x^(2)-7x+16)] is