Home
Class 12
MATHS
If for a sample size of 10, sum(i=1)^(10...

If for a sample size of `10`, `sum_(i=1)^(10)(x_i-5)^2=350 and sum_(i=1)^(10)(x_i-6)=20` , then the variance is

A

23

B

24

C

25

D

26

Text Solution

AI Generated Solution

The correct Answer is:
To find the variance based on the given information, we will follow these steps: ### Step 1: Understand the given information We have: - Sample size \( n = 10 \) - \( \sum_{i=1}^{10} (x_i - 5)^2 = 350 \) - \( \sum_{i=1}^{10} (x_i - 6) = 20 \) ### Step 2: Calculate \( \sum_{i=1}^{10} x_i \) From the second equation, we can express it as: \[ \sum_{i=1}^{10} (x_i - 6) = \sum_{i=1}^{10} x_i - 60 = 20 \] This leads to: \[ \sum_{i=1}^{10} x_i = 20 + 60 = 80 \] ### Step 3: Calculate \( \sum_{i=1}^{10} (x_i - 5) \) We can relate \( \sum_{i=1}^{10} (x_i - 5) \) to \( \sum_{i=1}^{10} x_i \): \[ \sum_{i=1}^{10} (x_i - 5) = \sum_{i=1}^{10} x_i - 50 = 80 - 50 = 30 \] ### Step 4: Use the variance formula The variance \( \sigma^2 \) is given by: \[ \sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n} \] Where \( \bar{x} \) is the mean. We can express it as: \[ \sigma^2 = \frac{\sum_{i=1}^{10} (x_i - 5)^2}{10} - \left(\frac{\sum_{i=1}^{10} (x_i - 5)}{10}\right)^2 \] ### Step 5: Substitute the values We know: - \( \sum_{i=1}^{10} (x_i - 5)^2 = 350 \) - \( \sum_{i=1}^{10} (x_i - 5) = 30 \) Now substituting these values into the variance formula: \[ \sigma^2 = \frac{350}{10} - \left(\frac{30}{10}\right)^2 \] Calculating each term: \[ \sigma^2 = 35 - 3^2 = 35 - 9 = 26 \] ### Final Answer The variance is \( 26 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

For a sample size of 10 observations x_(1), x_(2),...... x_(10) , if Sigma_(i=1)^(10)(x_(i)-5)^(2)=350 and Sigma_(i=1)^(10)(x_(i)-2)=60 , then the variance of x_(i) is

If n= 10, sum_(i=1)^(10) x_(i) = 60 and sum_(i=1)^(10) x_(i)^(2) = 1000 then find s.d.

If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

If sum_(i=1)^(9) (x_(i)-5) " and" sum__(i=1)^(9) (x_(i)-5)^(2)=45 , then the standard deviation of the 9 items x_(1),x_(2),..,x_(9) is

If x_1,x_2,.......,x_n are n values of a variable X such that sum_(i=1)^n (x_i-2)=110 and sum_(i=1)^n(x_i-5) =20 . Find the value of n and the mean.

Let the observations x_i(1 le I le 10) satisfy the equations, Sigma_(i=1)^(10)(x_i-5)=10 and Sigma_(i=1)^(10) (x_i-5)^2=40 . If mu and lamda are the mean and the variance of the observations, x_1-3, x_2-3, …, -3, then the ordered pair (mu, lamda) is equal to :

If Sigma_(i=1)^(10) x_i=60 and Sigma_(i=1)^(10)x_i^2=360 then Sigma_(i=1)^(10)x_i^3 is

If sum_(i=1)^(18)(x_(i) - 8) = 9 and sum_(i=1)^(18)(x_(i) - 8)^(2) = 45 then find the standard deviation of x_(1), x_(2),….x_(18)

If for a sample of size 60, we have the following information sum(x_(i))^2=18000 and sumx_(i)=960 , then the variance is

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i) = 20 show the values of n are 5 or 20