Home
Class 12
MATHS
If 1/(1!11!)+1/(3!9!)+1/(5!7!)=(2^n)/(m!...

If `1/(1!11!)+1/(3!9!)+1/(5!7!)=(2^n)/(m!)` then the value of m + n is

A

18

B

23

C

12

D

22

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{1! \cdot 11!} + \frac{1}{3! \cdot 9!} + \frac{1}{5! \cdot 7!} = \frac{2^n}{m!} \] we will simplify the left-hand side step by step. ### Step 1: Write the left-hand side clearly The left-hand side (LHS) is: \[ LHS = \frac{1}{1! \cdot 11!} + \frac{1}{3! \cdot 9!} + \frac{1}{5! \cdot 7!} \] ### Step 2: Multiply and divide by \(12!\) To simplify the expression, we multiply and divide each term by \(12!\): \[ LHS = \frac{12!}{1! \cdot 11! \cdot 12!} + \frac{12!}{3! \cdot 9! \cdot 12!} + \frac{12!}{5! \cdot 7! \cdot 12!} \] This gives us: \[ LHS = \frac{12!}{1! \cdot 11!} + \frac{12!}{3! \cdot 9!} + \frac{12!}{5! \cdot 7!} \] ### Step 3: Simplify each term Now we simplify each term separately: 1. For the first term: \[ \frac{12!}{1! \cdot 11!} = \frac{12 \cdot 11!}{1! \cdot 11!} = 12 \] 2. For the second term: \[ \frac{12!}{3! \cdot 9!} = \frac{12 \cdot 11 \cdot 10 \cdot 9!}{3! \cdot 9!} = \frac{12 \cdot 11 \cdot 10}{6} = 2 \cdot 11 \cdot 10 = 220 \] 3. For the third term: \[ \frac{12!}{5! \cdot 7!} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{5! \cdot 7!} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{120} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{5!} \] Simplifying gives: \[ = 792 \] ### Step 4: Add the simplified terms Now we add these simplified terms together: \[ LHS = 12 + 220 + 792 = 1024 \] ### Step 5: Write the final expression Now we have: \[ LHS = \frac{1024}{12!} \] ### Step 6: Compare with the right-hand side We know from the problem statement that: \[ \frac{1024}{12!} = \frac{2^n}{m!} \] Since \(1024 = 2^{10}\), we can write: \[ \frac{2^{10}}{12!} \] From this, we can identify \(n = 10\) and \(m = 12\). ### Step 7: Calculate \(m + n\) Finally, we calculate: \[ m + n = 12 + 10 = 22 \] Thus, the final answer is: \[ \boxed{22} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/(1!xx11!)+1/(3!xx9!)+1/(5!xx7!)=2^n/n! Then m+ n=

If the direction cosines of two lines are (l_(1), m_(1), n_(1)) and (l_(2), m_(2), n_(2)) and the angle between them is theta then l_(1)^(2)+m_(1)^(2)+n_(1)^(2)=1=l_(2)^(2)+m_(2)^(2)+n_(2)^(2) and costheta = l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2) If l_(1)=1/sqrt(3), m_(1)=1/sqrt(3) then the value of n_(1) is equal to

If (a^(m))^(n)=a^(m).a^(n) , find the value of : m(n - 1) - (n - 1)

If the sum of the series 1+(3)/(2)+(5)/(4)+(7)/(8)+……+((2n-1))/((2)^(n-1)) is f(n) , then the value of f(8) is

If m = root(3)(15) and n = root(3)(14) , find the value of m - n - (1)/(m^(2) + mn + n^(2))

If (m-5, n + 3) = (7, 9), find the values of m and n.

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

(9n-(5n-3))/(8)=(2(n-1)-(3-7n))/(12) In the equation above, what is the value of n?