Home
Class 12
MATHS
If x satisfies the inequality (tan^-1x)^...

If x satisfies the inequality `(tan^-1x)^2+3(tan^-1x)-4gt0` , then the complete set of values of x is

A

`(-tan4,pi/4)`

B

`(oo,tan4)cup(pi/4,oo)`

C

`(tan1,oo)`

D

`(tan4,tan1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((\tan^{-1}x)^2 + 3(\tan^{-1}x) - 4 > 0\), we can follow these steps: ### Step 1: Substitute \(y\) for \(\tan^{-1}x\) Let \(y = \tan^{-1}x\). Then the inequality becomes: \[ y^2 + 3y - 4 > 0 \] ### Step 2: Factor the quadratic expression We need to factor the quadratic expression \(y^2 + 3y - 4\). We can do this by finding two numbers that multiply to \(-4\) (the constant term) and add to \(3\) (the coefficient of \(y\)). The numbers \(4\) and \(-1\) satisfy this condition. Therefore, we can rewrite the inequality as: \[ (y - 1)(y + 4) > 0 \] ### Step 3: Identify critical points The critical points of the inequality are found by setting each factor to zero: 1. \(y - 1 = 0 \Rightarrow y = 1\) 2. \(y + 4 = 0 \Rightarrow y = -4\) ### Step 4: Test intervals We will test the intervals determined by the critical points \(-4\) and \(1\): - Interval 1: \(y < -4\) (e.g., \(y = -5\)) - Interval 2: \(-4 < y < 1\) (e.g., \(y = 0\)) - Interval 3: \(y > 1\) (e.g., \(y = 2\)) **Testing Interval 1:** For \(y = -5\): \[ (-5 - 1)(-5 + 4) = (-6)(-1) = 6 > 0 \quad \text{(True)} \] **Testing Interval 2:** For \(y = 0\): \[ (0 - 1)(0 + 4) = (-1)(4) = -4 < 0 \quad \text{(False)} \] **Testing Interval 3:** For \(y = 2\): \[ (2 - 1)(2 + 4) = (1)(6) = 6 > 0 \quad \text{(True)} \] ### Step 5: Write the solution in terms of \(y\) The inequality \( (y - 1)(y + 4) > 0 \) holds true for: \[ y < -4 \quad \text{or} \quad y > 1 \] ### Step 6: Translate back to \(x\) Since \(y = \tan^{-1}x\), we have: 1. \(\tan^{-1}x < -4\) (not possible since \(\tan^{-1}x\) ranges from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\)) 2. \(\tan^{-1}x > 1\) To find the corresponding \(x\) values: \[ x > \tan(1) \] ### Step 7: Conclusion Thus, the complete set of values of \(x\) that satisfy the original inequality is: \[ x > \tan(1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (0.2)^((2x-3)/(x-2))gt 5 then complete solution set of values of x is

The solution set of the inequality (tan^(-1)x)^(2) le (tan^(-1)x) +6 is

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value (b, -a) is :

The inequality x^(2)-3x gt tan^(-1) x is ture in

Let f(x) = tan^(-1) (x^2-18x + a) gt 0 x in R . Then the value of a lies in

The inequality (x-1)In(2-x)lt0 holds, if x satisfies

Find all values of the parameter a for which the inequality a.9^x +4(a-1)3^x+a gt 1 is satisfied for all real values of x

The set of values of x, satisfying the equation tan^2(sin^-1x) > 1 is -

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

The solution set of the inequation |(2x-1)/(x-1)| gt 2 , is