Home
Class 12
MATHS
The value of int0^(12pi) ([sint]+[-sint]...

The value of `int_0^(12pi) ([sint]+[-sint])dt` is equal to (where [.] denotes the greatest integer function )

A

`12pi`

B

`-12pi`

C

`-10pi`

D

`-6pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{12\pi} \left( [\sin t] + [-\sin t] \right) dt \), where \([.]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Understanding the periodic nature of the sine function The sine function, \(\sin t\), is periodic with a period of \(2\pi\). Therefore, we can simplify the integral over the interval \(0\) to \(12\pi\) by breaking it into smaller intervals of \(2\pi\). \[ I = \int_0^{12\pi} \left( [\sin t] + [-\sin t] \right) dt = 6 \int_0^{2\pi} \left( [\sin t] + [-\sin t] \right) dt \] ### Step 2: Analyzing the expression \([\sin t] + [-\sin t]\) We need to evaluate \([\sin t] + [-\sin t]\) over the interval \(0\) to \(2\pi\). - For \(0 \leq t < \frac{\pi}{2}\): \(\sin t\) ranges from \(0\) to \(1\). Thus, \([\sin t] = 0\) and \([- \sin t] = -1\). Therefore, \([\sin t] + [-\sin t] = 0 - 1 = -1\). - For \(\frac{\pi}{2} \leq t < \frac{3\pi}{2}\): \(\sin t\) ranges from \(1\) to \(-1\). Thus, \([\sin t] = 0\) and \([- \sin t] = -1\) when \(t\) is in \((\frac{\pi}{2}, \frac{3\pi}{2})\). Therefore, \([\sin t] + [-\sin t] = 0 - 1 = -1\). - For \(\frac{3\pi}{2} \leq t < 2\pi\): \(\sin t\) ranges from \(-1\) to \(0\). Thus, \([\sin t] = -1\) and \([- \sin t] = 0\). Therefore, \([\sin t] + [-\sin t] = -1 + 0 = -1\). ### Step 3: Evaluating the integral from \(0\) to \(2\pi\) Now we can evaluate the integral: \[ \int_0^{2\pi} \left( [\sin t] + [-\sin t] \right) dt = \int_0^{2\pi} (-1) dt = -1 \cdot (2\pi) = -2\pi \] ### Step 4: Final calculation of \(I\) Substituting back into our expression for \(I\): \[ I = 6 \cdot (-2\pi) = -12\pi \] ### Conclusion The value of the integral is: \[ \boxed{-12\pi} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

The value of the integral I=int_(0)^( pi/4)[sin x+cos x](cos x-sin x)dx is equal to (where,[.] denotes the greatest integer function)

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to