Home
Class 12
MATHS
If S=sum(r=1)^(80)(r)/((r^4+r^2+1)) , t...

If `S=sum_(r=1)^(80)(r)/((r^4+r^2+1))` , then the value of `(6481s)/(1000)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( S = \sum_{r=1}^{80} \frac{r}{r^4 + r^2 + 1} \) and then find the value of \( \frac{6481 S}{1000} \). ### Step-by-Step Solution 1. **Rewrite the Denominator**: We start with the expression for \( S \): \[ S = \sum_{r=1}^{80} \frac{r}{r^4 + r^2 + 1} \] Notice that we can rewrite the denominator: \[ r^4 + r^2 + 1 = (r^2 + 1)^2 - r^2 \] This allows us to express it as a difference of squares. 2. **Multiply and Divide by 2**: To simplify the expression, we multiply and divide by 2: \[ S = \sum_{r=1}^{80} \frac{2r}{2(r^4 + r^2 + 1)} = \frac{1}{2} \sum_{r=1}^{80} \frac{2r}{(r^2 + 1)^2 - r^2} \] 3. **Add and Subtract \( r^2 \)**: Now, we add and subtract \( r^2 \) in the denominator: \[ S = \frac{1}{2} \sum_{r=1}^{80} \left( \frac{2r}{(r^2 + r + 1)(r^2 - r + 1)} \right) \] 4. **Split the Fraction**: We can express the fraction as: \[ \frac{2r}{(r^2 + r + 1)(r^2 - r + 1)} = \frac{A}{r^2 + r + 1} + \frac{B}{r^2 - r + 1} \] for some constants \( A \) and \( B \). 5. **Find Constants A and B**: By equating coefficients, we can determine \( A \) and \( B \). After some algebra, we find: \[ A = 1, \quad B = -1 \] Thus: \[ S = \frac{1}{2} \sum_{r=1}^{80} \left( \frac{1}{r^2 - r + 1} - \frac{1}{r^2 + r + 1} \right) \] 6. **Telescoping Series**: The series is telescoping: \[ S = \frac{1}{2} \left( \left( \frac{1}{1} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{7} \right) + \ldots + \left( \frac{1}{6401} - \frac{1}{6481} \right) \right) \] Most terms cancel out, and we are left with: \[ S = \frac{1}{2} \left( 1 - \frac{1}{6481} \right) \] 7. **Calculate S**: Thus, we get: \[ S = \frac{1}{2} \left( \frac{6480}{6481} \right) = \frac{3240}{6481} \] 8. **Final Calculation**: Now we need to find: \[ \frac{6481 S}{1000} = \frac{6481 \cdot \frac{3240}{6481}}{1000} = \frac{3240}{1000} = 3.24 \] ### Final Answer: \[ \frac{6481 S}{1000} = 3.24 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^10 r/(1-3r^2+r^4)

Let t_(100)=sum_(r=0)^(100)(1)/(("^(100)C_(r ))^(5)) and S_(100)=sum_(r=0)^(100)(r )/(("^(100)C_(r ))^(5)) , then the value of (100t_(100))/(S_(100)) is (a) 1 (b) 2 (c) 3 (d) 4

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)) , then

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

If T_(r)=(1)/(log_(z)4) (where r in N ), then the value of sum_(r=1)^(4) T_(r) is :

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))