Home
Class 12
CHEMISTRY
Using the Gibbs energy change, Delta G^(...

Using the Gibbs energy change, `Delta G^(@)=+ 63.3 kJ`, for the following reaction,
`Ag_(2)CO_(3)hArr2Ag^(+)(aq)+CO_(3)^(2-)`
the `K_(sp)` of `Ag_(2)CO_(3)(s)` in water at `25^(@)C` is
`(R=8.314 JK^(-1)mol^(-1))`

A

`7.9xx10^-2`

B

`8.0xx10^-12`

C

`2.9xx10^-3`

D

`3.2xx10^-26`

Text Solution

AI Generated Solution

The correct Answer is:
To find the solubility product constant \( K_{sp} \) of \( Ag_2CO_3 \) using the given Gibbs energy change \( \Delta G^\circ = +63.3 \, \text{kJ} \), we can follow these steps: ### Step-by-Step Solution: 1. **Convert Gibbs Energy to Joules**: \[ \Delta G^\circ = 63.3 \, \text{kJ} = 63.3 \times 10^3 \, \text{J} = 63300 \, \text{J} \] 2. **Determine the Temperature in Kelvin**: \[ T = 25^\circ C = 273 + 25 = 298 \, \text{K} \] 3. **Use the Gibbs Free Energy Equation**: The relationship between Gibbs free energy and the equilibrium constant is given by: \[ \Delta G^\circ = -RT \ln K_{sp} \] Rearranging this gives: \[ \ln K_{sp} = -\frac{\Delta G^\circ}{RT} \] 4. **Substitute the Values**: Using \( R = 8.314 \, \text{J K}^{-1} \text{mol}^{-1} \): \[ \ln K_{sp} = -\frac{63300}{8.314 \times 298} \] 5. **Calculate the Denominator**: \[ 8.314 \times 298 \approx 2477.572 \] 6. **Calculate \( \ln K_{sp} \)**: \[ \ln K_{sp} = -\frac{63300}{2477.572} \approx -25.53 \] 7. **Convert from Natural Logarithm to Base 10**: To convert from natural logarithm to base 10, we use the conversion: \[ \ln K_{sp} = 2.303 \log K_{sp} \] Thus, \[ \log K_{sp} = \frac{\ln K_{sp}}{2.303} \approx \frac{-25.53}{2.303} \approx -11.09 \] 8. **Calculate \( K_{sp} \)**: \[ K_{sp} = 10^{\log K_{sp}} = 10^{-11.09} \] 9. **Final Calculation**: To express \( 10^{-11.09} \): \[ K_{sp} \approx 10^{-12} \times 10^{0.91} \approx 10^{-12} \times 8.13 \approx 8.13 \times 10^{-12} \] ### Final Answer: \[ K_{sp} \approx 8 \times 10^{-12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Using the Gibbs energy change Delta G^(@) = +63. 3 kJ for the following reaction Ag_2CO_3( s) hArr 2Ag^(+) (aq) +CO_3^(2-) (aq) "the " K_(sp) " of " Ag_2CO_3(s) in water at 25^(@) C is (R = 8.314 JK^(-1) " mol ^(-1))

Complete the following reactions: 2Me_(3)C--Br overset (Ag_(2)CO_(3)) underset (Delta) rarr (A)

Write the equilibrium constant expressions for the following reactions. Cu( s)+ 2Ag^(+) (aq) hArr Cu^(2+) (aq) + 2Ag(s)

K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

For the reaction CO(g)+(1)/(2) O_(2)(g) hArr CO_(2)(g),K_(p)//K_(c) is

K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

The equilibrium constant K_c for the following reaction will be K_2CO_3(aq)+BaSO_4(s) hArr BaCO_3(s) +K_2SO_4(aq)

The equilibrium constant for the reaction, Ag_2O(s) hArr2Ag(s) +1/2 O_2 (g) is given by

For the following reaction: K=1.7xx10^(7) at 25^(@)C Ag^(o+)(aq)+2NH_(3)(aq) hArr [Ag(NH_(3))_(2)]^(o+) What is the value of DeltaG^(ɵ) in kJ ?

Ag_(2)CO_(3)darr+2HCl to AgCldarr+CO_(2)uarr+H_(2)O