Home
Class 12
MATHS
The int(0)^(pi//2)sgn(sin^2x-sinx+1/2) d...

The `int_(0)^(pi//2)sgn(sin^2x-sinx+1/2)` dx is equal to , (where , sgn (x) denotes the sigum function of x)

A

0

B

1

C

`pi`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{2}} \text{sgn}(\sin^2 x - \sin x + \frac{1}{2}) \, dx \), we will follow these steps: ### Step 1: Analyze the expression inside the signum function We start with the expression \( \sin^2 x - \sin x + \frac{1}{2} \). We need to determine when this expression is positive, negative, or zero. ### Step 2: Completing the square To simplify \( \sin^2 x - \sin x + \frac{1}{2} \), we can complete the square. The expression can be rewritten as follows: \[ \sin^2 x - \sin x + \frac{1}{2} = \left(\sin x - \frac{1}{2}\right)^2 + \frac{1}{4} \] Here, we added and subtracted \( \left(\frac{1}{2}\right)^2 = \frac{1}{4} \). ### Step 3: Analyze the completed square The completed square form \( \left(\sin x - \frac{1}{2}\right)^2 + \frac{1}{4} \) is always greater than or equal to \( \frac{1}{4} \) because a square is always non-negative. ### Step 4: Determine the signum function Since \( \left(\sin x - \frac{1}{2}\right)^2 + \frac{1}{4} > 0 \) for all \( x \), we conclude that: \[ \sin^2 x - \sin x + \frac{1}{2} > 0 \quad \text{for all } x \in \left[0, \frac{\pi}{2}\right] \] Thus, we have: \[ \text{sgn}(\sin^2 x - \sin x + \frac{1}{2}) = 1 \quad \text{for all } x \in \left[0, \frac{\pi}{2}\right] \] ### Step 5: Evaluate the integral Now we can substitute this result into the integral: \[ \int_{0}^{\frac{\pi}{2}} \text{sgn}(\sin^2 x - \sin x + \frac{1}{2}) \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx \] ### Step 6: Calculate the integral The integral of 1 over the interval from 0 to \( \frac{\pi}{2} \) is simply the length of the interval: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \text{sgn}(\sin^2 x - \sin x + \frac{1}{2}) \, dx = \frac{\pi}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

The value of the integral I=int_(0)^( pi/4)[sin x+cos x](cos x-sin x)dx is equal to (where,[.] denotes the greatest integer function)

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

If f(x)=sgn(cos 2x - 2 sin x + 3) , where sgn () is the signum function, then f(x)

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to