Home
Class 12
MATHS
If veca=2hati+3hatj+4hatk,veca.vecb=2 an...

If `veca=2hati+3hatj+4hatk,veca.vecb=2 and vecaxxvecb=2hati-hatk`, then `vecb` is

A

`(hati-2hatj+hatk)`

B

`(4hati-4hatj+2hatk)`

C

`1/2(3hati+7hatj+9hatk)`

D

`1/29(7hati-4hatj+14hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{b} \) given the vector \( \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \), the dot product \( \vec{a} \cdot \vec{b} = 2 \), and the cross product \( \vec{a} \times \vec{b} = 2\hat{i} - \hat{k} \). ### Step 1: Define the vector \( \vec{b} \) Let \( \vec{b} = x\hat{i} + y\hat{j} + z\hat{k} \). ### Step 2: Use the dot product The dot product \( \vec{a} \cdot \vec{b} \) can be calculated as follows: \[ \vec{a} \cdot \vec{b} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 2x + 3y + 4z \] Given that \( \vec{a} \cdot \vec{b} = 2 \), we have: \[ 2x + 3y + 4z = 2 \quad \text{(Equation 1)} \] ### Step 3: Use the cross product The cross product \( \vec{a} \times \vec{b} \) can be calculated using the determinant: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ x & y & z \end{vmatrix} \] Calculating this determinant, we get: \[ \vec{a} \times \vec{b} = \hat{i}(3z - 4y) - \hat{j}(2z - 4x) + \hat{k}(2y - 3x) \] Given that \( \vec{a} \times \vec{b} = 2\hat{i} - \hat{k} \), we can equate the coefficients: 1. For \( \hat{i} \): \( 3z - 4y = 2 \) (Equation 2) 2. For \( \hat{j} \): \( 2z - 4x = 0 \) (Equation 3) 3. For \( \hat{k} \): \( 2y - 3x = -1 \) (Equation 4) ### Step 4: Solve the equations From Equation 3, we can express \( z \) in terms of \( x \): \[ 2z = 4x \implies z = 2x \] Substituting \( z = 2x \) into Equation 2: \[ 3(2x) - 4y = 2 \implies 6x - 4y = 2 \implies 3x - 2y = 1 \quad \text{(Equation 5)} \] Now we have two equations: 1. \( 2x + 3y + 4(2x) = 2 \) (from Equation 1) 2. \( 3x - 2y = 1 \) (from Equation 5) Substituting \( z = 2x \) into Equation 1: \[ 2x + 3y + 8x = 2 \implies 10x + 3y = 2 \quad \text{(Equation 6)} \] ### Step 5: Solve Equations 5 and 6 We now have: 1. \( 10x + 3y = 2 \) (Equation 6) 2. \( 3x - 2y = 1 \) (Equation 5) Let's multiply Equation 5 by 3: \[ 9x - 6y = 3 \quad \text{(Equation 7)} \] Now, we can multiply Equation 6 by 2: \[ 20x + 6y = 4 \quad \text{(Equation 8)} \] Adding Equations 7 and 8: \[ (9x - 6y) + (20x + 6y) = 3 + 4 \implies 29x = 7 \implies x = \frac{7}{29} \] ### Step 6: Find \( y \) and \( z \) Substituting \( x \) back into Equation 5: \[ 3\left(\frac{7}{29}\right) - 2y = 1 \implies \frac{21}{29} - 2y = 1 \implies -2y = 1 - \frac{21}{29} = \frac{29 - 21}{29} = \frac{8}{29} \implies y = -\frac{4}{29} \] Now, substituting \( x \) back to find \( z \): \[ z = 2x = 2\left(\frac{7}{29}\right) = \frac{14}{29} \] ### Step 7: Write the vector \( \vec{b} \) Thus, we have: \[ \vec{b} = x\hat{i} + y\hat{j} + z\hat{k} = \frac{7}{29}\hat{i} - \frac{4}{29}\hat{j} + \frac{14}{29}\hat{k} \] Factoring out \( \frac{1}{29} \): \[ \vec{b} = \frac{1}{29}(7\hat{i} - 4\hat{j} + 14\hat{k}) \] ### Final Answer The vector \( \vec{b} \) is: \[ \vec{b} = \frac{1}{29}(7\hat{i} - 4\hat{j} + 14\hat{k}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

If veca=(hati+hatj+hatk), and veca.vecb=1 and vecaxxvecb = -(hati-hatk) then vecb is (A) hati-hatj+hatk (B) 2hatj-hatk (C) hatj (D) 2hati

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is (a) hati - hatj + hatk (b) 2hati - hatk (c) hati (d) 2hati

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: veca.(vecb+vecc)=veca.vecb+veca.vecc .

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: (veca+vecb).(veca-vecb)=a^2-b^2 .