Home
Class 12
MATHS
Let I1=int0^(pi/2)(dt)/(1+t^6)and I2int0...

Let `I_1=int_0^(pi/2)(dt)/(1+t^6)and I_2int_0^(pi/2)(xcosxdx)/(1+(xsinx+cosx)^6),` then

A

`2I_1 =I_2`

B

`I_1 =2I_2`

C

`I_1=I_2`

D

`I_1=I_2=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and show that they are equal. ### Step 1: Define the integrals We have: \[ I_1 = \int_0^{\frac{\pi}{2}} \frac{dt}{1 + t^6} \] \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{x \cos x \, dx}{1 + (x \sin x + \cos x)^6} \] ### Step 2: Simplify \( I_2 \) To simplify \( I_2 \), we will use a substitution. Let: \[ t = x \sin x + \cos x \] We need to find \( dt \) in terms of \( dx \). ### Step 3: Differentiate \( t \) Differentiating \( t \) with respect to \( x \): \[ dt = \left( \sin x + x \cos x \right) dx - \sin x \, dx = (x \cos x) \, dx \] ### Step 4: Substitute in \( I_2 \) Now we can express \( I_2 \) in terms of \( dt \): \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{dt}{1 + t^6} \] Here, we have replaced \( x \cos x \, dx \) with \( dt \) in the numerator and \( 1 + (x \sin x + \cos x)^6 \) with \( 1 + t^6 \) in the denominator. ### Step 5: Conclusion Thus, we have shown that: \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{dt}{1 + t^6} = I_1 \] This means that \( I_2 = I_1 \). ### Final Result Therefore, we conclude that: \[ I_1 = I_2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) e^-xcosxdx

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int_0^(pi/2) cosx/(1+sinx)dx

Find I=int_0^pi ln(1+cosx)dx

int_0^(pi/2) sqrt(cosx)sinxdx

Evaluate: int_0^(pi//2)cosx\ dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

If I_1=int_0^(pi/2)f(sinx)sinxdx and I_2=int_0^(pi/2)f(cosx)cosxdx then I_1/I_2