Home
Class 12
MATHS
Let ar=r^4Cr,br=(4-r)^4Cr,Ar=[{:(ar,2),(...

Let `a_r=r^4C_r,b_r=(4-r)^4C_r,A_r=[{:(a_r,2),(3,b_r):}] and A = sum _(r=0)^4A_r` then the value of |A| is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the components of the matrices and then calculate the determinant of the resulting matrix. ### Step 1: Define \( a_r \) and \( b_r \) Given: - \( a_r = \binom{4}{r} \) - \( b_r = \binom{4}{4-r} = \binom{4}{r} \) (since \( \binom{n}{k} = \binom{n}{n-k} \)) ### Step 2: Define the matrix \( A_r \) The matrix \( A_r \) is defined as: \[ A_r = \begin{pmatrix} a_r & 2 \\ 3 & b_r \end{pmatrix} \] Substituting the values of \( a_r \) and \( b_r \): \[ A_r = \begin{pmatrix} \binom{4}{r} & 2 \\ 3 & \binom{4}{r} \end{pmatrix} \] ### Step 3: Calculate \( A \) We need to sum \( A_r \) from \( r = 0 \) to \( r = 4 \): \[ A = \sum_{r=0}^{4} A_r = \sum_{r=0}^{4} \begin{pmatrix} \binom{4}{r} & 2 \\ 3 & \binom{4}{r} \end{pmatrix} \] ### Step 4: Calculate the individual components of the matrix Calculating each component of the resulting matrix \( A \): - The (1,1) entry: \[ \sum_{r=0}^{4} \binom{4}{r} = 2^4 = 16 \] - The (1,2) entry: \[ \sum_{r=0}^{4} 2 = 2 \times 5 = 10 \] - The (2,1) entry: \[ \sum_{r=0}^{4} 3 = 3 \times 5 = 15 \] - The (2,2) entry: \[ \sum_{r=0}^{4} \binom{4}{r} = 2^4 = 16 \] Thus, we have: \[ A = \begin{pmatrix} 16 & 10 \\ 15 & 16 \end{pmatrix} \] ### Step 5: Calculate the determinant of matrix \( A \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \): \[ |A| = 16 \cdot 16 - 10 \cdot 15 \] Calculating this: \[ |A| = 256 - 150 = 106 \] ### Final Answer Thus, the value of \( |A| \) is \( 106 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_r=r(.^7C_r),b_r=(7-r)(.^7C_r) and A_r=[(a_r,0),(0,b_r)] . If A=sum_(r=0)^7 A_r=[(a,0),(0,b)] , then find the value of a+b .

In triangle ABC,angleA=pi/2b=4,c=3 ,then the value of R/r is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If S=sum_(r=1)^(80)(r)/((r^4+r^2+1)) , then the value of (6481s)/(1000) is

The value of sum _(r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

Prove that sum_(r=0)^n3^r^n C_r=4^n .

If a_n = n (n!) , then sum_(r=1)^100 a_r is equal to

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of Q + R is equal to