Home
Class 12
MATHS
The value of x for which "sin"(cot^(-1)(...

The value of `x` for which `"sin"(cot^(-1)(1+x))="cos"(tan^(-1)x)` is `1/2` (b) 1 (c) 0 (d) `-1/2`

A

`1/2`

B

1

C

0

D

`-1/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

sin(cot^(-1)(tan(tan^(-1)x))),"x" in (0," 1]

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

Prove that : sin cot^(-1) tan cos^(-1) x=x

Solve: sin[2\ cos^(-1){cot(2\ tan^(-1)x)}]=0

The value of lim_(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))" is "

The value of sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]} is equal to (x gt0)

Solve 3 tan^(-1) x+cot^(-1)x=pi . a) 0 b) 1 c) -1 d) 1/2