Home
Class 12
MATHS
If f(x)=[x]^({x}) +{x}^([x]) + sin (pix...

If `f(x)=[x]^({x}) +{x}^([x]) + sin (pix)` , Where [.] and {.} represent the greatest integer function and the fractional part function respectively, then `f'(7/2)` Is equal to

A

`sqrt3In3+pi/4`

B

`sqrt3In3+(3pi)/4`

C

`sqrt3In3+pi+3/4`

D

`sqrt3In3+3/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = [x]^{\{x\}} + \{x\}^{[x]} + \sin(\pi x) \) at \( x = \frac{7}{2} \). ### Step-by-step Solution: 1. **Identify the components of \( f(x) \)**: - Here, \( [x] \) is the greatest integer function (floor function), and \( \{x\} \) is the fractional part function. - For \( x = \frac{7}{2} = 3.5 \): - \( [x] = [3.5] = 3 \) - \( \{x\} = \{3.5\} = 3.5 - 3 = 0.5 \) 2. **Substitute \( [x] \) and \( \{x\} \) into \( f(x) \)**: \[ f\left(\frac{7}{2}\right) = 3^{0.5} + 0.5^3 + \sin\left(\pi \cdot \frac{7}{2}\right) \] - Calculate \( \sin\left(\pi \cdot \frac{7}{2}\right) = \sin\left(\frac{7\pi}{2}\right) \): - Since \( \frac{7\pi}{2} = 3.5\pi \), we can reduce it: - \( 3.5\pi \) corresponds to \( \frac{\pi}{2} \) (as \( 3.5\pi - 3\pi = \frac{\pi}{2} \)), thus \( \sin\left(\frac{7\pi}{2}\right) = 1 \). 3. **Calculate \( f\left(\frac{7}{2}\right) \)**: \[ f\left(\frac{7}{2}\right) = \sqrt{3} + 0.125 + 1 = \sqrt{3} + 1.125 \] 4. **Differentiate \( f(x) \)**: - We need to differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( [x]^{\{x\}} \right) + \frac{d}{dx} \left( \{x\}^{[x]} \right) + \frac{d}{dx} \left( \sin(\pi x) \right) \] 5. **Differentiate each term**: - For \( [x]^{\{x\}} \): \[ \frac{d}{dx} \left( [x]^{\{x\}} \right) = [x]^{\{x\}} \ln([x]) \cdot \frac{d}{dx}(\{x\}) = 3^{0.5} \ln(3) \cdot 1 = \sqrt{3} \ln(3) \] - For \( \{x\}^{[x]} \): \[ \frac{d}{dx} \left( \{x\}^{[x]} \right) = [x] \cdot \{x\}^{[x]-1} \cdot \frac{d}{dx}(\{x\}) = 3 \cdot (0.5)^2 \cdot 1 = 3 \cdot 0.25 = \frac{3}{4} \] - For \( \sin(\pi x) \): \[ \frac{d}{dx} \left( \sin(\pi x) \right) = \pi \cos(\pi x) \] - At \( x = \frac{7}{2} \), \( \cos\left(\frac{7\pi}{2}\right) = 0 \). 6. **Combine the derivatives**: \[ f'\left(\frac{7}{2}\right) = \sqrt{3} \ln(3) + \frac{3}{4} + 0 \] 7. **Final result**: \[ f'\left(\frac{7}{2}\right) = \sqrt{3} \ln(3) + \frac{3}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

If f(x) = [x^2] + sqrt({x}^2 , where [] and {.} denote the greatest integer and fractional part functions respectively,then

Solve the equation [x]{x}=x, where [] and {} denote the greatest integer function and fractional part, respectively.

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

In the questions, [x]a n d{x} represent the greatest integer function and the fractional part function, respectively. Solve: [x]^2-5[x]+6=0.

Draw a graph of f(x) = sin {x} , where {x} represents the greatest integer function.

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Find the solution of the equation [x] + {-x} = 2x, (where [*] and {*} represents greatest integer function and fractional part function respectively.