Home
Class 12
MATHS
If {:(lim),(xrarr0):}(1+px+qx^2)^("cosec...

If `{:(lim),(xrarr0):}(1+px+qx^2)^("cosec"x)=e^5` ,then

A

`p=5,qinR`

B

`p=5,qgtR`

C

`p=5,qinR`

D

`q=5,p=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 0} (1 + px + qx^2)^{\csc x} = e^5 \] ### Step 1: Identify the form of the limit As \( x \to 0 \), we have: - \( \csc x \to \infty \) - \( 1 + px + qx^2 \to 1 \) This gives us the indeterminate form \( 1^\infty \). ### Step 2: Rewrite the limit using the exponential function We can rewrite the limit in the form suitable for applying the exponential limit property: \[ \lim_{x \to 0} (1 + px + qx^2)^{\csc x} = e^{\lim_{x \to 0} \csc x \cdot \ln(1 + px + qx^2)} \] ### Step 3: Simplify the logarithm Using the Taylor expansion for \( \ln(1 + u) \) where \( u \) is small, we have: \[ \ln(1 + px + qx^2) \approx px + qx^2 \quad \text{as } x \to 0 \] ### Step 4: Substitute back into the limit Now substituting this back into our limit, we get: \[ \lim_{x \to 0} \csc x \cdot \ln(1 + px + qx^2) \approx \lim_{x \to 0} \csc x \cdot (px + qx^2) \] ### Step 5: Express \( \csc x \) Recall that \( \csc x = \frac{1}{\sin x} \). Near \( x = 0 \), we can use the approximation \( \sin x \approx x \): \[ \csc x \approx \frac{1}{x} \] Thus, we can rewrite our limit as: \[ \lim_{x \to 0} \frac{px + qx^2}{x} = \lim_{x \to 0} (p + qx) = p \] ### Step 6: Set the limit equal to \( e^5 \) From the original equation, we have: \[ e^{p} = e^5 \] This implies: \[ p = 5 \] ### Step 7: Determine the value of \( q \) Since the term involving \( q \) vanishes as \( x \to 0 \) (because it is multiplied by \( x \)), \( q \) can take any real value. Thus, we conclude: \[ q \in \mathbb{R} \] ### Final Answer The values are: - \( p = 5 \) - \( q \) can be any real number.
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr0)(1+px+qx^(2))^("cosec "x)=2048 , then the value of (p)/(11) is equal to (take ln2=0.69 )

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0)x sec x

lim_( xrarr0) (1-cosx)/(x^(2))

If lim_(xrarr0) (cosx+a sinbx)^(1//x)= e^2 , then the values of a and b are

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr0) (sinx)/(x)= ?