Home
Class 12
MATHS
If inte^(sintheta)(sintheta+sec^2theta)"...

If `inte^(sintheta)(sintheta+sec^2theta)"d"theta` is equal to `f(theta)+C` (where , C is the constant of integration) and f(0) = 0 , then the value of `f(pi/4)` is

A

`e^(sqrt(2))`

B

`e^(1/sqrt(2))`

C

`e^2`

D

`e^(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{\sin \theta} (\sin \theta + \sec^2 \theta) \, d\theta \) and find the value of \( f\left(\frac{\pi}{4}\right) \) given that \( f(0) = 0 \), we can follow these steps: ### Step 1: Split the Integral We can split the integral into two parts: \[ \int e^{\sin \theta} (\sin \theta + \sec^2 \theta) \, d\theta = \int e^{\sin \theta} \sin \theta \, d\theta + \int e^{\sin \theta} \sec^2 \theta \, d\theta \] ### Step 2: Solve the Second Integral Using Integration by Parts For the second integral \( \int e^{\sin \theta} \sec^2 \theta \, d\theta \), we can use integration by parts. Let: - \( u = e^{\sin \theta} \) (first function) - \( dv = \sec^2 \theta \, d\theta \) (second function) Then, we find: - \( du = e^{\sin \theta} \cos \theta \, d\theta \) - \( v = \tan \theta \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] we have: \[ \int e^{\sin \theta} \sec^2 \theta \, d\theta = e^{\sin \theta} \tan \theta - \int \tan \theta (e^{\sin \theta} \cos \theta) \, d\theta \] ### Step 3: Simplify the Expression The integral \( \int \tan \theta (e^{\sin \theta} \cos \theta) \, d\theta \) can be rewritten as: \[ \int e^{\sin \theta} \sin \theta \, d\theta \] Thus, we have: \[ \int e^{\sin \theta} \sec^2 \theta \, d\theta = e^{\sin \theta} \tan \theta - \int e^{\sin \theta} \sin \theta \, d\theta \] ### Step 4: Combine the Results Now, we can combine the results: \[ \int e^{\sin \theta} (\sin \theta + \sec^2 \theta) \, d\theta = \int e^{\sin \theta} \sin \theta \, d\theta + \left( e^{\sin \theta} \tan \theta - \int e^{\sin \theta} \sin \theta \, d\theta \right) \] This simplifies to: \[ \int e^{\sin \theta} (\sin \theta + \sec^2 \theta) \, d\theta = e^{\sin \theta} \tan \theta + C \] ### Step 5: Identify \( f(\theta) \) From the integral, we can identify: \[ f(\theta) = e^{\sin \theta} \tan \theta \] ### Step 6: Evaluate \( f\left(\frac{\pi}{4}\right) \) Now we need to find \( f\left(\frac{\pi}{4}\right) \): \[ f\left(\frac{\pi}{4}\right) = e^{\sin\left(\frac{\pi}{4}\right)} \tan\left(\frac{\pi}{4}\right) \] Calculating the values: - \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \tan\left(\frac{\pi}{4}\right) = 1 \) Thus: \[ f\left(\frac{\pi}{4}\right) = e^{\frac{1}{\sqrt{2}}} \cdot 1 = e^{\frac{1}{\sqrt{2}}} \] ### Final Answer The value of \( f\left(\frac{\pi}{4}\right) \) is: \[ \boxed{e^{\frac{1}{\sqrt{2}}}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

int_0^(pi//2)(theta/sintheta)^2d theta=

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta

Evaluate: int(1+costheta)/(theta+sintheta)d theta

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

The value of int((1-cos theta)^((3)/(10)))/((1+cos theta)^((13)/(10))) d theta is equal to (where, c is the constant of integration)

If the integral I=int(tanx)/(5+7tan^(2)x)dx=kln |f(x)|+C (where C is the integration constant) and f(0)=5/7 , then the value of f((pi)/(4)) is equal to