Home
Class 12
MATHS
The coefficient of x^8 in the expasnsion...

The coefficient of `x^8` in the expasnsion of `(1+(x^2)/(2!)+(x^4)/(4!)+(x^6)/(6!)+(x^8)/(8!))^2` is

A

`1/135`

B

`2/315`

C

`3/105`

D

`1/210`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^8 \) in the expansion of \[ \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!}\right)^2, \] we can follow these steps: ### Step 1: Recognize the series The expression inside the parentheses resembles the Taylor series expansion of \( e^x \), but only includes even powers of \( x \). This can be interpreted as: \[ \frac{1}{2} \left( e^x + e^{-x} \right) = \cosh(x). \] Thus, we can rewrite our expression as: \[ \left( \cosh(x) \right)^2. \] ### Step 2: Use the identity for hyperbolic cosine Using the identity \( \cosh^2(x) = \frac{1 + \cosh(2x)}{2} \), we can express our function as: \[ \cosh^2(x) = \frac{1 + \cosh(2x)}{2}. \] ### Step 3: Expand \( \cosh(2x) \) The expansion of \( \cosh(2x) \) is given by: \[ \cosh(2x) = \sum_{n=0}^{\infty} \frac{(2x)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{2^{2n} x^{2n}}{(2n)!}. \] ### Step 4: Find the coefficient of \( x^8 \) Now, we need the coefficient of \( x^8 \) in the expansion of \( \frac{1 + \cosh(2x)}{2} \). 1. The constant term \( 1 \) contributes \( 0 \) to the coefficient of \( x^8 \). 2. The term \( \cosh(2x) \) contributes: \[ \frac{(2x)^8}{8!} = \frac{2^8 x^8}{8!}. \] Thus, the coefficient of \( x^8 \) in \( \cosh(2x) \) is \( \frac{2^8}{8!} \). ### Step 5: Combine results The coefficient of \( x^8 \) in \( \cosh^2(x) \) is then: \[ \frac{1}{2} \cdot \frac{2^8}{8!} = \frac{2^7}{8!}. \] ### Step 6: Simplify the expression Calculating \( 2^7 = 128 \) and \( 8! = 40320 \): \[ \frac{128}{40320}. \] ### Step 7: Simplify further To simplify \( \frac{128}{40320} \): 1. Divide both numerator and denominator by \( 16 \): \[ \frac{8}{2520}. \] 2. Divide again by \( 4 \): \[ \frac{2}{630}. \] 3. Finally, divide by \( 2 \): \[ \frac{1}{315}. \] Thus, the coefficient of \( x^8 \) in the expansion is: \[ \frac{1}{315}. \] ### Final Answer The coefficient of \( x^8 \) in the expansion is \( \frac{1}{315} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

The coefficient of x^(8) in the expansion of (1+x+x^(2)+x^(3))^(4) is

Find the coefficient of x^8 in the expansion of (x^2-1/x)^(10)

Find the coefficient of x^7 in the expansion of (1+2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7)^10

Find the coefficient of x^-1 in (1+3 x^2+x^4) (1+1/x)^8

The coefficient of x^70 in the product (x-1)(x^2-2)(x^3-3)....(x^12-12) is (a) 4 . (b) 6 (c) 8 (d) 12

Solve : (x)/(6)ge (8-3x)/(2) +4

lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)

((x-1)(x+1)(x+4)(x+6))/(7x^2+8x+4)>0

lim_(xrarr2) (x^(2)-5x+6)/(x^(2)-6x+8)