Home
Class 12
MATHS
If Dr=|{:(r,15,8),(r^2,35,9),(r^3,25,10)...

If `D_r=|{:(r,15,8),(r^2,35,9),(r^3,25,10):}|`, then the value of `root(5)(((-1/100)sum_(r=1)^5D_r)-37)` is equal to

A

5

B

2

C

9

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( D_r = \begin{vmatrix} r & 15 & 8 \\ r^2 & 35 & 9 \\ r^3 & 25 & 10 \end{vmatrix} \) for \( r = 1, 2, 3, 4, 5 \), then compute the expression \( \sqrt[5]{\left(-\frac{1}{100} \sum_{r=1}^{5} D_r\right) - 37} \). ### Step 1: Calculate the determinant \( D_r \) The determinant \( D_r \) can be calculated using the formula for 3x3 determinants: \[ D_r = r \begin{vmatrix} 35 & 9 \\ 25 & 10 \end{vmatrix} - 15 \begin{vmatrix} r^2 & 9 \\ r^3 & 10 \end{vmatrix} + 8 \begin{vmatrix} r^2 & 35 \\ r^3 & 25 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 35 & 9 \\ 25 & 10 \end{vmatrix} = (35 \cdot 10) - (9 \cdot 25) = 350 - 225 = 125 \) 2. \( \begin{vmatrix} r^2 & 9 \\ r^3 & 10 \end{vmatrix} = (r^2 \cdot 10) - (9 \cdot r^3) = 10r^2 - 9r^3 \) 3. \( \begin{vmatrix} r^2 & 35 \\ r^3 & 25 \end{vmatrix} = (r^2 \cdot 25) - (35 \cdot r^3) = 25r^2 - 35r^3 \) Substituting these back into the determinant expression: \[ D_r = r \cdot 125 - 15(10r^2 - 9r^3) + 8(25r^2 - 35r^3) \] Expanding this: \[ D_r = 125r - 150r^2 + 135r^3 + 200r^2 - 280r^3 \] Combining like terms: \[ D_r = 125r + (200 - 150)r^2 + (135 - 280)r^3 = 125r + 50r^2 - 145r^3 \] ### Step 2: Calculate \( \sum_{r=1}^{5} D_r \) Now we need to compute \( \sum_{r=1}^{5} D_r \): \[ \sum_{r=1}^{5} D_r = \sum_{r=1}^{5} (125r + 50r^2 - 145r^3) \] Using the formulas for summation: 1. \( \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \) 2. \( \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \) 3. \( \sum_{r=1}^{n} r^3 = \left(\frac{n(n+1)}{2}\right)^2 \) For \( n = 5 \): - \( \sum_{r=1}^{5} r = \frac{5 \cdot 6}{2} = 15 \) - \( \sum_{r=1}^{5} r^2 = \frac{5 \cdot 6 \cdot 11}{6} = 55 \) - \( \sum_{r=1}^{5} r^3 = \left(\frac{5 \cdot 6}{2}\right)^2 = 225 \) Now substituting these values: \[ \sum_{r=1}^{5} D_r = 125 \cdot 15 + 50 \cdot 55 - 145 \cdot 225 \] Calculating each term: 1. \( 125 \cdot 15 = 1875 \) 2. \( 50 \cdot 55 = 2750 \) 3. \( -145 \cdot 225 = -32625 \) Combining these: \[ \sum_{r=1}^{5} D_r = 1875 + 2750 - 32625 = 4625 - 32625 = -28000 \] ### Step 3: Substitute into the expression Now we substitute \( \sum_{r=1}^{5} D_r \) into the expression: \[ \sqrt[5]{\left(-\frac{1}{100} \cdot (-28000)\right) - 37} \] Calculating: \[ -\frac{1}{100} \cdot (-28000) = 280 \] So we have: \[ \sqrt[5]{280 - 37} = \sqrt[5]{243} \] Since \( 243 = 3^5 \): \[ \sqrt[5]{243} = 3 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^n r(n-r) is equal to :

sum_(r=1)^n r (n-r +1) is equal to :

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

The value of sum _(r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

If Delta_(r)=|{:(r,r-1),(r-1,r):}| where is a natural number, the value of root(10)(sum_(r=1)^(1024))Delta_(r) is

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is