Home
Class 12
MATHS
Let I1=int0^1e^(x^2)dx and I2=int0^(1)2x...

Let `I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx` then the value of `I_1 +I_2` is equal to

A

1

B

2

C

e

D

`e^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and find the sum \( I_1 + I_2 \). 1. **Define the integrals:** \[ I_1 = \int_0^1 e^{x^2} \, dx \] \[ I_2 = \int_0^1 2x^2 e^{x^2} \, dx \] 2. **Simplify \( I_2 \):** We can rewrite \( I_2 \) as: \[ I_2 = \int_0^1 2x e^{x^2} x \, dx \] This suggests a substitution. Let \( t = x^2 \), then \( dt = 2x \, dx \) or \( dx = \frac{dt}{2x} \). When \( x = 0 \), \( t = 0 \) and when \( x = 1 \), \( t = 1 \). Thus, we can rewrite \( I_2 \): \[ I_2 = \int_0^1 e^{t} \, dt \] 3. **Evaluate \( I_2 \):** The integral \( \int e^t \, dt \) evaluates to \( e^t \). Therefore: \[ I_2 = \left[ e^t \right]_0^1 = e^1 - e^0 = e - 1 \] 4. **Now we need to evaluate \( I_1 \):** We will use integration by parts to evaluate \( I_1 \). Let: \[ u = e^{x^2} \quad \text{and} \quad dv = dx \] Then: \[ du = 2x e^{x^2} \, dx \quad \text{and} \quad v = x \] Applying integration by parts: \[ I_1 = \left[ x e^{x^2} \right]_0^1 - \int_0^1 x (2x e^{x^2}) \, dx \] The first term evaluates to: \[ \left[ x e^{x^2} \right]_0^1 = 1 \cdot e^1 - 0 \cdot e^0 = e \] The second term is: \[ -\int_0^1 2x^2 e^{x^2} \, dx = -I_2 \] Therefore: \[ I_1 = e - I_2 \] 5. **Substituting \( I_2 \) into \( I_1 \):** Since we found \( I_2 = e - 1 \): \[ I_1 = e - (e - 1) = 1 \] 6. **Now calculate \( I_1 + I_2 \):** \[ I_1 + I_2 = 1 + (e - 1) = e \] Thus, the final result is: \[ I_1 + I_2 = e \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

If I_1=int_0^1(e^x)/(1+x) dx aand I_2=int_0^1 x^2/(e^(x^3)(2-x^3)) dx then I_1/I_2 is

L e tI_1=int_0^1(e^xdx)/(1+x) a n dI_2=int_0^1(x^2dx)/(e^(x^3)(2-x^3))dot tehn (I_1)/(I_2) is equal to (a)3/e (b) e/3 (c) 3e (d) 1/(3e)

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

int_0^1 x^2 e^(2x) dx

Let I_1=int_0^1 e^x/(1+x)dx and I_2=int_0^1(x^2e^(x^2))/(2-x^3)dx Statement-1: I_1/I_2=3e Statement-2: int_a^b f(x)dx=int_a^b f(a+b-x)dx (A) Both 1 and 2 are true and 2 is the correct explanation of 1 (B) Both 1 and 2 are true and 2 is not correct explanation of 1 (C) 1 is true but 2 is false (D) 1 is false but 2 is true

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then