Home
Class 12
MATHS
Let vec(U)=hati+hatj,vecV=hati-hatjand v...

Let `vec(U)=hati+hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. ` If `hat(n)` is a unit vector such that `vec(U)`.`hat(n)` =0 and `vec(V)`.`hat(n)`=0 , then `|vecW.hatn|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Identify the vectors We are given the vectors: - \(\vec{U} = \hat{i} + \hat{j}\) - \(\vec{V} = \hat{i} - \hat{j}\) - \(\vec{W} = 3\hat{i} + 5\hat{j} + 3\hat{k}\) ### Step 2: Find the unit vector \(\hat{n}\) The unit vector \(\hat{n}\) is perpendicular to both \(\vec{U}\) and \(\vec{V}\). Therefore, we can find \(\hat{n}\) by calculating the cross product \(\vec{U} \times \vec{V}\). \[ \vec{U} \times \vec{V} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant gives us: \[ \vec{U} \times \vec{V} = \hat{i}(1 \cdot 0 - 1 \cdot 0) - \hat{j}(1 \cdot 0 - 1 \cdot 0) + \hat{k}(1 \cdot (-1) - 1 \cdot 1) \] \[ = 0\hat{i} - 0\hat{j} - 2\hat{k} = -2\hat{k} \] ### Step 4: Normalize the vector to find \(\hat{n}\) Since \(\hat{n}\) is a unit vector, we normalize \(-2\hat{k}\): \[ \hat{n} = \frac{-2\hat{k}}{|-2|} = -\hat{k} \] ### Step 5: Calculate \(|\vec{W} \cdot \hat{n}|\) Now, we need to find \(|\vec{W} \cdot \hat{n}|\): \[ \vec{W} \cdot \hat{n} = (3\hat{i} + 5\hat{j} + 3\hat{k}) \cdot (-\hat{k}) \] Calculating the dot product: \[ = 3(\hat{i} \cdot -\hat{k}) + 5(\hat{j} \cdot -\hat{k}) + 3(\hat{k} \cdot -\hat{k}) \] Since \(\hat{i} \cdot \hat{k} = 0\) and \(\hat{j} \cdot \hat{k} = 0\): \[ = 0 + 0 - 3 = -3 \] ### Step 6: Find the magnitude Finally, we take the absolute value: \[ |\vec{W} \cdot \hat{n}| = |-3| = 3 \] ### Final Answer Thus, the value of \(|\vec{W} \cdot \hat{n}|\) is **3**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vecu= hati + hatj , vecv = hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecv .hatn =0 , " then " |vecw.hatn| is equal to

Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn| is equal to

Let vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2 hat j+3hat k .If hat n is a unit vector such that vec u*hat n=0 and vec v*hat n=0 then |vec w*hat n| is equal to

Let vecu=hati+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot