Home
Class 12
MATHS
If A=[{:(2,3),(-1,-2):}] and B=sum(r=1)^...

If `A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r` , then the value of det (B)is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \( B \), which is defined as \( B = \sum_{r=1}^{10} A^r \), where \( A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we need to calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \] Calculating the product: - First row, first column: \( 2 \cdot 2 + 3 \cdot (-1) = 4 - 3 = 1 \) - First row, second column: \( 2 \cdot 3 + 3 \cdot (-2) = 6 - 6 = 0 \) - Second row, first column: \( -1 \cdot 2 + (-2) \cdot (-1) = -2 + 2 = 0 \) - Second row, second column: \( -1 \cdot 3 + (-2) \cdot (-2) = -3 + 4 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] where \( I \) is the identity matrix. ### Step 2: Determine the pattern for \( A^r \) From the calculation of \( A^2 \), we can deduce: - For even \( r \): \( A^{2k} = I \) - For odd \( r \): \( A^{2k+1} = A \) ### Step 3: Calculate \( B \) Now, we can express \( B \): \[ B = A^1 + A^2 + A^3 + A^4 + A^5 + A^6 + A^7 + A^8 + A^9 + A^{10} \] Substituting the values based on the pattern: - Odd powers (1, 3, 5, 7, 9): \( 5A \) - Even powers (2, 4, 6, 8, 10): \( 5I \) Thus, we can write: \[ B = 5A + 5I = 5(A + I) \] ### Step 4: Calculate \( A + I \) Now we need to compute \( A + I \): \[ A + I = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ -1 & -1 \end{pmatrix} \] ### Step 5: Calculate \( B \) Now substituting back into \( B \): \[ B = 5 \begin{pmatrix} 3 & 3 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 15 & 15 \\ -5 & -5 \end{pmatrix} \] ### Step 6: Calculate \( \text{det}(B) \) Now we find the determinant of \( B \): \[ \text{det}(B) = 15 \cdot (-5) - 15 \cdot (-5) = -75 + 75 = 0 \] ### Final Answer Thus, the value of \( \text{det}(B) \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If (r+1)^(th) term in the expasnion of (a^(3)/3-2/a^(2))^(10) contains a^(20) then the value of r is equal to

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

Let det A=|{:(l,m,n),(p,q,r),(1,1,1):}| and if (l-m)^2 + (p-q)^2 =9, (m-n)^2 + (q-r)^2=16, (n-l)^2 +(r-p)^2=25 , then the value ("det." A)^2 equals :

If I(r)=r(r^2-1) , then sum_(r=2)^n 1/(I(r)) is equal to

sum_(r=1)^10 r/(1-3r^2+r^4)

The sequence a_(1),a_(2),a_(3),".......," is a geometric sequence with common ratio r . The sequence b_(1),b_(2),b_(3),".......," is also a geometric sequence. If b_(1)=1,b_(2)=root4(7)-root4(28)+1,a_(1)=root4(28)" and "sum_(n=1)^(oo)(1)/(a_(n))=sum_(n=1)^(oo)(b_(n)) , then the value of (1+r^(2)+r^(4)) is

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

If a = sum_(r=1)^(oo) 1/(r^(2)), b = sum_(r=1)^(oo) 1/((2r-1)^(2)), then (3a)/b is equal to _____