Home
Class 12
PHYSICS
A few spherical equipotential surfaces a...

A few spherical equipotential surfaces are shown in the figure. The electric field at any point, at a distance x from the centre, is

A

`(6)/(x^(2))` perpendicular to the plane of paper

B

`(600)/(x^(2))` perpendicular to the plane of paper

C

`(6)/(x^(2))` radially

D

`(600)/(x^(2))` radially

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Equipotential surfaces are shown in figure. Then the electric field strength will be

A family of equipotential surface are shown. The direction of the electric field at point A is along-

Four point charges +q,+q,-q and -q are placed on the corners of a square of side length 'a' as shown in the figure. The magnitude of electric field at a point which is at a distance x (gt gt a) from the centre along a line perpendicular to the plane of the square and passing through the centre is

A sphere of radius 2R and mas M has a spherical cavity of radius R as shown in the figure. Find the value of gravitational field at a point P at a distance of 6R from centre of the sphere.

Some equipotential plane parallel surfaces are shown in the figure. The planes are inclined to x-axis by 45° and distance from one plane to another plane along x-axis is 20cm. The electric field is:

Consider a thin spherical shell of radius R consisting of uniform surface charge density sigma . The electric field at a point of distance x from its centre and outside the shell is

A uniform but time-varying magnetic field B(t) exists in a circular region of radius a and is directed into the plane of the paper, as shown. The magnitude of the induced electric field at point P at a distance r from the centre of the circular region

Figure shows equipotential surfaces concentric at O the magnitude of electric field at a distance r measured from O is

If the given figure shows equipotential surfaces, then the magnitude of electric field is

Assertion: Electric potential on the surface of a charged sphere of radius R is V. Then electric field at distance r=R/2 from centre is V/(2R) . Charge is distributed uniformly over the volume. Reason: From centre to surface, electric field varies linearly with r. Here r is distance from centre.