Home
Class 12
MATHS
Let g(x)=|x-2| and h(x)=g(g(x)) be two f...

Let `g(x)=|x-2| and h(x)=g(g(x))` be two functions, then the value of `h'(-1)+h'(1)+h'(3)+h'(5)` is equal to (where, h' denotes the derivative of h)

A

2

B

`-1`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( h'(-1) + h'(1) + h'(3) + h'(5) \), where \( h(x) = g(g(x)) \) and \( g(x) = |x - 2| \). ### Step 1: Define the function \( g(x) \) The function \( g(x) \) is defined as: \[ g(x) = |x - 2| \] This function outputs the distance of \( x \) from 2. ### Step 2: Find \( g(g(x)) \) Next, we need to compute \( h(x) = g(g(x)) \): \[ h(x) = g(g(x)) = g(|x - 2|) \] Now, we need to evaluate \( g(|x - 2|) \): - If \( |x - 2| \geq 2 \), then \( g(|x - 2|) = | |x - 2| - 2 | \) - If \( |x - 2| < 2 \), then \( g(|x - 2|) = 2 - |x - 2| \) ### Step 3: Determine the intervals for \( h(x) \) 1. **Case 1**: \( x < 0 \) - \( |x - 2| = 2 - x \) - \( g(g(x)) = g(2 - x) = |(2 - x) - 2| = | - x | = x \) 2. **Case 2**: \( 0 \leq x < 2 \) - \( |x - 2| = 2 - x \) - \( g(g(x)) = g(2 - x) = |(2 - x) - 2| = | - x | = x \) 3. **Case 3**: \( 2 \leq x < 4 \) - \( |x - 2| = x - 2 \) - \( g(g(x)) = g(x - 2) = |(x - 2) - 2| = |x - 4| \) 4. **Case 4**: \( x \geq 4 \) - \( |x - 2| = x - 2 \) - \( g(g(x)) = g(x - 2) = |(x - 2) - 2| = |x - 4| \) ### Step 4: Derivative of \( h(x) \) Now we can find the derivative \( h'(x) \) in each case: 1. **For \( x < 2 \)**: \( h(x) = x \) → \( h'(x) = 1 \) 2. **For \( 2 \leq x < 4 \)**: \( h(x) = |x - 4| \) - If \( x < 4 \), \( h(x) = 4 - x \) → \( h'(x) = -1 \) - If \( x \geq 4 \), \( h(x) = x - 4 \) → \( h'(x) = 1 \) ### Step 5: Evaluate \( h'(-1), h'(1), h'(3), h'(5) \) - \( h'(-1) = 1 \) (since \(-1 < 2\)) - \( h'(1) = 1 \) (since \(1 < 2\)) - \( h'(3) = -1 \) (since \(2 \leq 3 < 4\)) - \( h'(5) = 1 \) (since \(5 \geq 4\)) ### Step 6: Calculate the final value Now we can sum these derivatives: \[ h'(-1) + h'(1) + h'(3) + h'(5) = 1 + 1 - 1 + 1 = 2 \] ### Final Answer The value of \( h'(-1) + h'(1) + h'(3) + h'(5) \) is \( \boxed{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

g(x)=2x-1 h(x)=1-g(x) The functions g and h are defined above. What is the value of h(0) ?

If h(x) = sqrt(x^(2)+x-4) and g(x)=sqrt(5x) , what is the value of h(g(6)) ?

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).

h(x)=2^x The function h is defined above. What is h(5) − h( 3) ?

g(x)=(x)/(x-2) and h(x)=sqrt(9-x) Given of the following defined above, what is the value of (g@h)(5) ?

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

If h(a)=h(b), the value of the integral int_a^b [f(g(h(x))]^(-1)f'(g(h(x)))g'(h(x))h'(x)dx is equal to

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to