Home
Class 12
MATHS
The value of Delta=|(1,sin 3theta, sin^(...

The value of `Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)|` equal to

A

`-2`

B

`-1`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & \sin 3\theta & \sin^3 \theta \\ 2\cos \theta & \sin 6\theta & \sin^3 2\theta \\ 4\cos^2 \theta - 1 & \sin 9\theta & \sin^3 3\theta \end{vmatrix} \), we can follow these steps: ### Step 1: Rewrite the Determinant We start with the given determinant: \[ \Delta = \begin{vmatrix} 1 & \sin 3\theta & \sin^3 \theta \\ 2\cos \theta & \sin 6\theta & \sin^3 2\theta \\ 4\cos^2 \theta - 1 & \sin 9\theta & \sin^3 3\theta \end{vmatrix} \] ### Step 2: Apply Column Operations We can simplify the determinant by applying column operations. Let's multiply the first column by \( \sin \theta \): \[ \Delta = \frac{1}{\sin \theta} \begin{vmatrix} \sin \theta & \sin 3\theta & \sin^3 \theta \\ 2\cos \theta \sin \theta & \sin 6\theta & \sin^3 2\theta \\ (4\cos^2 \theta - 1) \sin \theta & \sin 9\theta & \sin^3 3\theta \end{vmatrix} \] ### Step 3: Use Trigonometric Identities We know the identity: \[ \sin 3\theta = 3\sin \theta - 4\sin^3 \theta \] Using this identity, we can express \( \sin 6\theta \) and \( \sin 9\theta \) similarly: \[ \sin 6\theta = 3\sin 2\theta - 4\sin^3 2\theta \] \[ \sin 9\theta = 3\sin 3\theta - 4\sin^3 3\theta \] ### Step 4: Substitute the Identities Substituting these identities back into the determinant gives us: \[ \Delta = \frac{1}{\sin \theta} \begin{vmatrix} \sin \theta & 3\sin \theta - 4\sin^3 \theta & \sin^3 \theta \\ 2\cos \theta \sin \theta & 3(2\sin \theta - 4\sin^3 \theta) & \sin^3 2\theta \\ (4\cos^2 \theta - 1) \sin \theta & 3(3\sin \theta - 4\sin^3 \theta) & \sin^3 3\theta \end{vmatrix} \] ### Step 5: Factor Out Common Terms Notice that the first column has a common factor of \( \sin \theta \): \[ \Delta = \frac{1}{\sin \theta} \begin{vmatrix} 1 & 3 - 4\sin^2 \theta & \sin^2 \theta \\ 2\cos \theta & 3(2 - 4\sin^2 \theta) & \sin^3 2\theta \\ (4\cos^2 \theta - 1) & 3(3 - 4\sin^2 \theta) & \sin^3 3\theta \end{vmatrix} \] ### Step 6: Check for Linear Dependence Now we can check if the columns are linearly dependent. If we find that the first column is a linear combination of the others, the determinant will be zero. ### Step 7: Conclude the Result After checking the columns, we find that: \[ \Delta = 0 \] Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

If sin2 theta=3/4, then sin^(3)theta+cos^(3)theta=

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

Prove that (cos^3theta+sin^3 theta)/(cos theta+sin theta)+(cos^3 theta-sin^3 theta)/(cos theta-sin theta)=2

Let sin theta-cos theta=1 then the value of sin^(3) theta-cos^(3)theta is :

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

The expression (sin 8thetacos theta-sin6 thetacos 3 theta)/(cos 2 thetacos theta-sin 3 thetasin 4 theta) is equals:-

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta