Home
Class 12
MATHS
If f(x) is the antidervative of (1+2 tan...

If `f(x)` is the antidervative of `(1+2 tanx(tanx+secx))^((1)/(2)) and f((pi)/(6))=log2`, then the value of `f(0)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(0) \) given that \( f(x) \) is the antiderivative of the function \( (1 + 2 \tan x (\tan x + \sec x))^{\frac{1}{2}} \) and that \( f\left(\frac{\pi}{6}\right) = \log 2 \). ### Step-by-Step Solution: 1. **Identify the Function to Integrate**: We need to integrate the function: \[ (1 + 2 \tan x (\tan x + \sec x))^{\frac{1}{2}}. \] 2. **Simplify the Expression Inside the Square Root**: We can rewrite \( 1 + 2 \tan x (\tan x + \sec x) \): \[ 1 + 2 \tan x \tan x + 2 \tan x \sec x = 1 + 2 \tan^2 x + 2 \tan x \sec x. \] We know that \( 1 + \tan^2 x = \sec^2 x \), so: \[ 1 + 2 \tan^2 x + 2 \tan x \sec x = \sec^2 x + 2 \tan x \sec x. \] 3. **Factor the Expression**: The expression can be factored as: \[ \sec^2 x + 2 \tan x \sec x = (\sec x + \tan x)^2. \] 4. **Integrate**: Therefore, we can rewrite the integral: \[ \int (1 + 2 \tan x (\tan x + \sec x))^{\frac{1}{2}} \, dx = \int \sqrt{(\sec x + \tan x)^2} \, dx = \int (\sec x + \tan x) \, dx. \] The integral of \( \sec x + \tan x \) is: \[ \int (\sec x + \tan x) \, dx = \log |\sec x + \tan x| + C. \] Thus, we have: \[ f(x) = \log |\sec x + \tan x| + C. \] 5. **Use the Given Condition**: We know that \( f\left(\frac{\pi}{6}\right) = \log 2 \). Let's calculate \( f\left(\frac{\pi}{6}\right) \): \[ \sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}, \quad \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}. \] Therefore, \[ f\left(\frac{\pi}{6}\right) = \log\left(\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}\right) + C = \log\left(\frac{2 + 1}{\sqrt{3}}\right) + C = \log\left(\frac{3}{\sqrt{3}}\right) + C = \log\sqrt{3} + C. \] Setting this equal to \( \log 2 \): \[ \log\sqrt{3} + C = \log 2. \] Thus, \[ C = \log 2 - \log\sqrt{3} = \log\left(\frac{2}{\sqrt{3}}\right). \] 6. **Final Function**: Now we can express \( f(x) \): \[ f(x) = \log |\sec x + \tan x| + \log\left(\frac{2}{\sqrt{3}}\right) = \log\left(\frac{2}{\sqrt{3}} (\sec x + \tan x)\right). \] 7. **Calculate \( f(0) \)**: Now we need to find \( f(0) \): \[ \sec(0) = 1, \quad \tan(0) = 0. \] Thus, \[ f(0) = \log\left(\frac{2}{\sqrt{3}} (1 + 0)\right) = \log\left(\frac{2}{\sqrt{3}}\right). \] ### Conclusion: The value of \( f(0) \) is: \[ f(0) = \log\left(\frac{2}{\sqrt{3}}\right). \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int{1+2tanx(tanx+secx))^(1/2)dx

Evaluate: int{1+2tanx(tanx+secx))^(1/2)dx

Evaluate: int{1+2tanx(tanx+secx))^(1/2)dx

Evaluate: int{1+2tanx(tanx+secx)}^(1/2)dx

If inte^x\ (tanx+1)secx\ dx=e^x\ f(x)+C , then write the value of f(x) .

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

Find the range of f(x) = (sinx)/(x)+(x)/(tanx) in (0,(pi)/(2))

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is

Let y=(secx+tanx-1)/(tanx-secx+1) .If ((dy)/(dx))_(x=(pi)/4)=a+sqrt(b) , then value of a+b is equal to

If x in [1,2] , then find the range of f(x)=tanx