Home
Class 12
MATHS
If A is a square matrix of order 2xx2 an...

If A is a square matrix of order `2xx2` and `B=[(1,2),(3, 4)]`, such that `AB=BA`, then A can be

A

`[(1,4),(6, 7)]`

B

`[(1, 4),(7, 6)]`

C

`[(2,2),(2,4)]`

D

`[(3,4),(4,9)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we have a square matrix \( A \) of order \( 2 \times 2 \) and a given matrix \( B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \) such that \( AB = BA \), we can follow these steps: ### Step 1: Define Matrix \( A \) Let matrix \( A \) be represented as: \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 2: Calculate \( AB \) Now, we will calculate the product \( AB \): \[ AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \] Calculating the elements: - First row, first column: \( a \cdot 1 + b \cdot 3 = a + 3b \) - First row, second column: \( a \cdot 2 + b \cdot 4 = 2a + 4b \) - Second row, first column: \( c \cdot 1 + d \cdot 3 = c + 3d \) - Second row, second column: \( c \cdot 2 + d \cdot 4 = 2c + 4d \) Thus, we have: \[ AB = \begin{pmatrix} a + 3b & 2a + 4b \\ c + 3d & 2c + 4d \end{pmatrix} \] ### Step 3: Calculate \( BA \) Next, we calculate the product \( BA \): \[ BA = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot a + 2 \cdot c = a + 2c \) - First row, second column: \( 1 \cdot b + 2 \cdot d = b + 2d \) - Second row, first column: \( 3 \cdot a + 4 \cdot c = 3a + 4c \) - Second row, second column: \( 3 \cdot b + 4 \cdot d = 3b + 4d \) Thus, we have: \[ BA = \begin{pmatrix} a + 2c & b + 2d \\ 3a + 4c & 3b + 4d \end{pmatrix} \] ### Step 4: Set \( AB = BA \) Now, we set the two products equal to each other: \[ \begin{pmatrix} a + 3b & 2a + 4b \\ c + 3d & 2c + 4d \end{pmatrix} = \begin{pmatrix} a + 2c & b + 2d \\ 3a + 4c & 3b + 4d \end{pmatrix} \] ### Step 5: Formulate the Equations From the equality of the matrices, we can form the following equations: 1. \( a + 3b = a + 2c \) 2. \( 2a + 4b = b + 2d \) 3. \( c + 3d = 3a + 4c \) 4. \( 2c + 4d = 3b + 4d \) ### Step 6: Simplify the Equations 1. From the first equation: \( 3b = 2c \) ⇒ \( c = \frac{3}{2}b \) 2. From the second equation: \( 2a + 4b = b + 2d \) ⇒ \( 2a + 3b = 2d \) ⇒ \( d = a + \frac{3}{2}b \) 3. From the third equation: \( c + 3d = 3a + 4c \) ⇒ \( 3d = 3a + 3c \) ⇒ \( d = a + c \) 4. From the fourth equation: \( 2c + 4d = 3b + 4d \) ⇒ \( 2c = 3b \) ⇒ \( c = \frac{3}{2}b \) ### Step 7: Substitute Values Using \( c = \frac{3}{2}b \) in \( d = a + c \): \[ d = a + \frac{3}{2}b \] ### Step 8: Formulate Matrix \( A \) Now, we can express \( A \) in terms of \( a \) and \( b \): \[ A = \begin{pmatrix} a & b \\ \frac{3}{2}b & a + \frac{3}{2}b \end{pmatrix} \] ### Conclusion Thus, matrix \( A \) can be expressed as: \[ A = \begin{pmatrix} a & b \\ \frac{3}{2}b & a + \frac{3}{2}b \end{pmatrix} \] where \( a \) and \( b \) can take any real values.
Promotional Banner

Similar Questions

Explore conceptually related problems

If A is square matrix of order 2xx2 such that A^(2)=I,B=[{:(1,sqrt(2)),(0,1):}] and C=ABA then

If A is a square matrix of order 3 and |A|=2 , then the value of |-A A'| is

If A is a square matrix of order 2xx2 such that |A|=27 , then sum of the infinite series |A|+|1/2A|+|1/4 A|+|1/8 A|+... is equal to _______ .

If A is a square matrix of order 3 and |A|=5 , then value of |2A'| is

If A is a non- singular square matrix of the order 3xx3 such that A^2=3A then (A) -3 (B) 3 (C) 9 (D) 27

If A is a square matrix of order 3 such that abs(A)=2, then abs((adjA^(-1))^(-1)) is

If A is matrix of order mxxn and B is a matrix such that AB' and B'A are both defined , then order of matrix B is

If A is a square matrix of order 3 such that |A|=2 , then |(adjA^(-1))^(-1)| is

If is A is a matrix of order 3xx3 , then (A^(2))^(-1) is equal to…………….

If A and Bare square matrices of same order such that AB = A and BA = B, then AB^(2)+B^(2)= : a) AB b) A+B c) 2AB d) 2BA