Home
Class 12
MATHS
The value of int(-1)^(1)(sin^(-1)x+(x^(5...

The value of `int_(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cos^(2)x))dx` is equal to

A

`tan1`

B

0

C

`2tan1`

D

`-2tan1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-1}^{1} \left( \sin^{-1} x + \frac{x^5 + x^3 - 1}{\cos^2 x} \right) dx, \] we will analyze the integrand to determine if it is odd or even. ### Step 1: Identify the functions in the integrand The integrand consists of two parts: \( \sin^{-1} x \) and \( \frac{x^5 + x^3 - 1}{\cos^2 x} \). ### Step 2: Determine the nature of \( \sin^{-1} x \) The function \( \sin^{-1} x \) is an odd function because: \[ \sin^{-1}(-x) = -\sin^{-1}(x). \] ### Step 3: Analyze the second part \( \frac{x^5 + x^3 - 1}{\cos^2 x} \) 1. **Numerator**: The numerator \( x^5 + x^3 - 1 \) is an odd function because: - \( x^5 \) is odd, - \( x^3 \) is odd, - \(-1\) is a constant (even). Thus, the sum \( x^5 + x^3 - 1 \) is odd. 2. **Denominator**: The denominator \( \cos^2 x \) is an even function since \( \cos(-x) = \cos(x) \). 3. **Overall function**: The fraction \( \frac{x^5 + x^3 - 1}{\cos^2 x} \) is odd because it is the ratio of an odd function to an even function. ### Step 4: Combine the results Since both \( \sin^{-1} x \) and \( \frac{x^5 + x^3 - 1}{\cos^2 x} \) are odd functions, their sum is also an odd function: \[ f(x) = \sin^{-1} x + \frac{x^5 + x^3 - 1}{\cos^2 x} \text{ is odd.} \] ### Step 5: Evaluate the integral Using the property of integrals of odd functions over symmetric limits: \[ \int_{-a}^{a} f(x) \, dx = 0 \text{ for odd } f(x). \] Thus, we have: \[ \int_{-1}^{1} f(x) \, dx = 0. \] ### Conclusion The value of the integral is \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

int(1)/(1+3 sin ^(2)x)dx is equal to

The value of int_(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx is equal to ___________.

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

The value of int_(0)^(2)((x^(2)-2x+4)sin(x-1))/(2x^(2)-4x+5)dx is equal to

int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx is equal to

int_(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

int(1)/(sin(x-a)cos(x-b))dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to