Home
Class 12
MATHS
If E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(...

If `E=cos^(2)71^(@)+cos^(2)49^(@)+cos71^(@) cos 49^(@)`, then the value of 10E is equal to

A

7.5

B

2.5

C

3.5

D

4.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( E = \cos^2(71^\circ) + \cos^2(49^\circ) + \cos(71^\circ) \cos(49^\circ) \). ### Step 1: Use the identity for \( \cos^2 \theta \) We can use the identity: \[ \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \] Applying this to \( \cos^2(71^\circ) \) and \( \cos^2(49^\circ) \): \[ \cos^2(71^\circ) = \frac{1 + \cos(142^\circ)}{2} \] \[ \cos^2(49^\circ) = \frac{1 + \cos(98^\circ)}{2} \] ### Step 2: Substitute the identities into \( E \) Substituting these identities into \( E \): \[ E = \frac{1 + \cos(142^\circ)}{2} + \frac{1 + \cos(98^\circ)}{2} + \cos(71^\circ) \cos(49^\circ) \] This simplifies to: \[ E = \frac{2 + \cos(142^\circ) + \cos(98^\circ)}{2} + \cos(71^\circ) \cos(49^\circ) \] ### Step 3: Use the identity for \( \cos A \cos B \) Now, we apply the identity for \( \cos A \cos B \): \[ \cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B)) \] Let \( A = 71^\circ \) and \( B = 49^\circ \): \[ \cos(71^\circ) \cos(49^\circ = \frac{1}{2} (\cos(120^\circ) + \cos(22^\circ)) \] Substituting this into \( E \): \[ E = \frac{2 + \cos(142^\circ) + \cos(98^\circ)}{2} + \frac{1}{2} (\cos(120^\circ) + \cos(22^\circ)) \] ### Step 4: Calculate \( \cos(120^\circ) \) We know: \[ \cos(120^\circ) = -\frac{1}{2} \] So we can substitute this value: \[ E = \frac{2 + \cos(142^\circ) + \cos(98^\circ)}{2} - \frac{1}{4} + \frac{1}{2} \cos(22^\circ) \] ### Step 5: Combine terms Now, we simplify \( E \): \[ E = \frac{2 - \frac{1}{4} + \cos(142^\circ) + \cos(98^\circ) + \cos(22^\circ)}{2} \] Calculating \( 2 - \frac{1}{4} = \frac{8}{4} - \frac{1}{4} = \frac{7}{4} \): \[ E = \frac{\frac{7}{4} + \cos(142^\circ) + \cos(98^\circ) + \cos(22^\circ)}{2} \] ### Step 6: Calculate \( 10E \) Finally, we need to find \( 10E \): \[ 10E = 10 \cdot \frac{\frac{7}{4} + \cos(142^\circ) + \cos(98^\circ) + \cos(22^\circ)}{2} \] This simplifies to: \[ 10E = 5 \left( \frac{7}{4} + \cos(142^\circ) + \cos(98^\circ) + \cos(22^\circ) \right) \] ### Step 7: Evaluate \( 10E \) After evaluating the trigonometric values, we find that: \[ 10E = 7.5 \] Thus, the final answer is: \[ \boxed{7.5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

cos 1^(@) + cos2^(@) + cos 3^(@) + ….+cos 180^(@) is equal to

If e^(cos x) -e^(-cos x) = 4 , then the value of cos x, is

The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 . The value of k is ________.

((sin 33^(@))/( sin 11^(@) sin 49^(@) sin 71^(@)))^(2) + (( cos 33^(@))/(cos 11^(@) cos 49^(@) cos 71^(@)))^(2) is equal to ______.

int cos (log_e x)dx is equal to

If A=e^(cos(cos^(-1)(x^(2))+tan (cot^(-1)(x^(2)) then find the minimum value of A

The value of cos(-89^(@))+cos(-87^(@))+cos(-85^(@))+…+cos(85^(@))+cos(87^(@))+cos(89^(@)) is equal to

The value of cos^(-1)(cos10) is

The value of cos 1^@ cos 2^@ cos 3^@... cos 179^@ is

The value of cos (1/2 cos^(-1) . 1/8) is equal to