Home
Class 12
MATHS
If y=cos x cos 2x cos 4x cos 8x, then (d...

If `y=cos x cos 2x cos 4x cos 8x`, then `(dy)/(dx)" at "x=(pi)/(2)` is

A

1

B

0

C

4

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) of the function \(y = \cos x \cos 2x \cos 4x \cos 8x\) at \(x = \frac{\pi}{2}\), we can follow these steps: ### Step 1: Rewrite the Function We start with the given function: \[ y = \cos x \cos 2x \cos 4x \cos 8x \] ### Step 2: Use Trigonometric Identities We can use the identity \(2 \sin x \cos x = \sin 2x\) to simplify the expression. We will multiply and divide by \(2 \sin x\): \[ y = \frac{\sin 2x}{2 \sin x} \cdot \cos 2x \cos 4x \cos 8x \] ### Step 3: Simplify Further Continuing to apply the identity, we can rewrite the function: \[ y = \frac{\sin 4x}{4 \sin x} \cdot \cos 4x \cos 8x \] and then, \[ y = \frac{\sin 8x}{8 \sin x} \cdot \cos 8x \] and finally, \[ y = \frac{\sin 16x}{16 \sin x} \] ### Step 4: Differentiate the Function Now we differentiate \(y\) using the quotient rule: \[ \frac{dy}{dx} = \frac{(16 \cos 16x)(\sin x) - (\sin 16x)(\cos x)}{(16 \sin x)^2} \] ### Step 5: Evaluate at \(x = \frac{\pi}{2}\) Now we substitute \(x = \frac{\pi}{2}\): - \(\sin\left(\frac{\pi}{2}\right) = 1\) - \(\cos\left(\frac{\pi}{2}\right) = 0\) - \(\sin(16 \cdot \frac{\pi}{2}) = \sin(8\pi) = 0\) - \(\cos(16 \cdot \frac{\pi}{2}) = \cos(8\pi) = 1\) Substituting these values into the derivative: \[ \frac{dy}{dx} = \frac{(16 \cdot 1)(1) - (0)(0)}{(16 \cdot 1)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{16}{256} = \frac{1}{16} \] ### Final Result Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) is: \[ \frac{dy}{dx} = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= cos x^(@), then (dy)/(dx) is?

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If Y = ((2 - 3 cos x)/("sin" x)) , then (dy)/(dx) at x = (pi)/(4) is

int cos 2x . cos 4x . cos 6x dx

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

int cos 4x. cos 2x dx

If y = (cos x - sin x)/( cos x + sin x ) , "then " (dy)/(dx)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)