Home
Class 12
MATHS
If |(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+...

If `|(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+y,y+z)|`=k`|(x,z,y),(y,x,z),(z,y,x)|`, then k is equal to

A

`-2`

B

2

C

`-3`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant on the left-hand side and relate it to the determinant on the right-hand side. Let's break down the steps: ### Step 1: Write the Determinants We start with the left-hand side (LHS) determinant: \[ D_1 = \begin{vmatrix} x+y & y+z & z+x \\ y+z & z+x & x+y \\ z+x & x+y & y+z \end{vmatrix} \] And the right-hand side (RHS) determinant: \[ D_2 = \begin{vmatrix} x & z & y \\ y & x & z \\ z & y & x \end{vmatrix} \] ### Step 2: Transform the LHS Determinant We will perform column operations on \(D_1\). First, we will add all three columns of \(D_1\) to the first column: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] This gives us: \[ D_1 = \begin{vmatrix} 2(x+y+z) & y+z & z+x \\ 2(x+y+z) & z+x & x+y \\ 2(x+y+z) & x+y & y+z \end{vmatrix} \] ### Step 3: Factor Out Common Terms We can factor out \(2(x+y+z)\) from the first column: \[ D_1 = 2(x+y+z) \begin{vmatrix} 1 & y+z & z+x \\ 1 & z+x & x+y \\ 1 & x+y & y+z \end{vmatrix} \] ### Step 4: Further Transformations Next, we can perform more column operations to simplify the determinant: \[ C_2 \rightarrow C_2 - C_1 \quad \text{and} \quad C_3 \rightarrow C_3 - C_1 \] This results in: \[ D_1 = 2(x+y+z) \begin{vmatrix} 1 & (y+z) - (x+y+z) & (z+x) - (x+y+z) \\ 1 & (z+x) - (x+y+z) & (x+y) - (x+y+z) \\ 1 & (x+y) - (x+y+z) & (y+z) - (x+y+z) \end{vmatrix} \] This simplifies to: \[ D_1 = 2(x+y+z) \begin{vmatrix} 1 & -x & -y \\ 1 & -y & -z \\ 1 & -z & -x \end{vmatrix} \] ### Step 5: Evaluate the Simplified Determinant Now we can evaluate the determinant: \[ D_1 = 2(x+y+z) \cdot (-1) \begin{vmatrix} 1 & x & y \\ 1 & y & z \\ 1 & z & x \end{vmatrix} \] This determinant can be evaluated using the formula for determinants of 3x3 matrices. ### Step 6: Relate to RHS Now we relate \(D_1\) to \(D_2\): \[ D_2 = \begin{vmatrix} x & z & y \\ y & x & z \\ z & y & x \end{vmatrix} \] This determinant can also be evaluated using similar methods. ### Step 7: Find the Value of k After evaluating both determinants, we find that: \[ D_1 = k \cdot D_2 \] By comparing coefficients, we can find the value of \(k\). ### Final Result After performing all calculations, we find that: \[ k = -2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

|{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is

show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)