Home
Class 12
MATHS
If y=|tanx-|sinx||, then the value of (d...

If `y=|tanx-|sinx||`, then the value of `(dy)/(dx)` at `x=(5pi)/(4)` is

A

`(2sqrt2+1)/(sqrt2)`

B

`(2sqrt2-1)/(sqrt2)`

C

`(sqrt2+1)/(2)`

D

`(sqrt2-1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= tan^(-1)sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) at x= (pi)/6 is.

If y=logsqrt(tanx) , then the value of (dy)/(dx) at x=pi/4 is given by (a) oo (b) 1 (c) 0 (d) 1/2

If y=log_u|cos4x|+|sinx| ,where u=sec2x find (dy)/(dx) at x=-pi/6

The solution of (dy)/(dx)+2y tanx=sinx, is

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=(tanx)^((tanx)^((tanx).... ∞) ,then find (dy)/(dx) at x=pi/4

Find the values of (dy)/(dx) , if y = x^(tanx)+sqrt((x^(2)+1)/(2)) .

If y=sin^(-1)(sinx) , -pi/2lt=xlt=pi/2 . Then, write the value of (dy)/(dx) for x in (-pi/2,pi/2) .

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx)" at "x=0 is

If y=x^sinx ,then find dy/dx=