Home
Class 12
MATHS
If lim(xrarr0)(sin2x-asinx)/(x^(3)) exis...

If `lim_(xrarr0)(sin2x-asinx)/(x^(3))` exists finitely, then the value of a is

A

0

B

2

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{\sin 2x - a \sin x}{x^3} \) and find the value of \( a \) for which this limit exists finitely, we can follow these steps: ### Step 1: Rewrite the limit using the double angle formula We start by using the double angle formula for sine: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2 \sin x \cos x - a \sin x}{x^3} \] ### Step 2: Factor out \( \sin x \) Next, we can factor out \( \sin x \) from the numerator: \[ \lim_{x \to 0} \frac{\sin x (2 \cos x - a)}{x^3} \] ### Step 3: Rewrite \( x^3 \) in terms of \( \sin x \) We can express \( x^3 \) as \( x^2 \cdot x \) and use the fact that \( \frac{\sin x}{x} \to 1 \) as \( x \to 0 \): \[ \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{2 \cos x - a}{x^2} \] ### Step 4: Evaluate the limit Now, we know that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] So we need to focus on the limit: \[ \lim_{x \to 0} \frac{2 \cos x - a}{x^2} \] ### Step 5: Determine the condition for the limit to exist For the limit to exist finitely, the numerator \( 2 \cos x - a \) must approach 0 as \( x \to 0 \). Evaluating at \( x = 0 \): \[ 2 \cos(0) - a = 2 - a \] Setting this equal to 0 gives: \[ 2 - a = 0 \implies a = 2 \] ### Step 6: Verify the limit with \( a = 2 \) Substituting \( a = 2 \) back into the limit: \[ \lim_{x \to 0} \frac{2 \cos x - 2}{x^2} = \lim_{x \to 0} \frac{2(\cos x - 1)}{x^2} \] Using the Taylor series expansion for \( \cos x \) around \( x = 0 \): \[ \cos x \approx 1 - \frac{x^2}{2} + O(x^4) \] Thus: \[ \cos x - 1 \approx -\frac{x^2}{2} \] Substituting this into our limit: \[ \lim_{x \to 0} \frac{2 \left(-\frac{x^2}{2}\right)}{x^2} = \lim_{x \to 0} -1 = -1 \] This shows that the limit exists and is finite when \( a = 2 \). ### Conclusion Thus, the value of \( a \) for which the limit exists finitely is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a and L

lim_(xrarr0) (sin4x-sin2x+x)/(x)=?

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) (sin 3 x)/(2x)

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0) (x cos x-sinx)/(x^(2)sin x)

lim_(xrarr0) (sin 2x+x)/(x+tan 3x)=?