Home
Class 12
MATHS
If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)...

If `f(x)=tan^(-1)sqrt(x^(2)+4x)` `+sin^(-1)sqrt(x^(2)+4x+1)`

A

domain of `f(x)` contains 3 integers only

B

range of `f(x)` has two elements only

C

`f(x)` is a constant function `Aax in R`

D

`f(x)` contains only two elements in its domain

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

The complete solution set of the equation sin^(-1) sqrt((1+x)/(2))-sqrt(2-x)=cot^(-1)(tan sqrt(2-x))-sin^(-1) sqrt((1-x)/(2)) is :

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

Express: cot^-1 (y/((1-x^2-y^2)))=2tan^-1 sqrt((3-4x^2)/(4x^2))- tan^-1 sqrt (3-4x^2)/x^2 as a rational integral equation in x and y.

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

Prove that : sin^(-1) ""(x)/(sqrt(1 + x^(2))) + cos ^(-1) "" (x + 1)/( sqrt( x^(2) + 2x + 2)) = tan^(-1) ( x^(2) + x + 1)

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then