Home
Class 12
MATHS
Consider A=[(a(11),a(12)),(a(21),a(22))]...

Consider `A=[(a_(11),a_(12)),(a_(21),a_(22))]` and `B=[(1,1),(2,1)]` such that `AB=BA.` then the value of `(a_(12))/(a_(21))+(a_(11))/(a_(22))` is

A

2

B

4

C

`(3)/(2)`

D

`(1)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{a_{12}}{a_{21}} + \frac{a_{11}}{a_{22}}\) given that \(AB = BA\) for the matrices \(A\) and \(B\). ### Step-by-Step Solution: 1. **Define the Matrices**: Let \[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \] 2. **Calculate \(AB\)**: \[ AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} + 2a_{12} & a_{11} + a_{12} \\ a_{21} + 2a_{22} & a_{21} + a_{22} \end{pmatrix} \] 3. **Calculate \(BA\)**: \[ BA = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + a_{21} & a_{12} + a_{22} \\ 2a_{11} + a_{21} & 2a_{12} + a_{22} \end{pmatrix} \] 4. **Set \(AB = BA\)**: From the equality \(AB = BA\), we equate the corresponding elements: - From the first element: \[ a_{11} + 2a_{12} = a_{11} + a_{21} \implies 2a_{12} = a_{21} \tag{1} \] - From the second element: \[ a_{11} + a_{12} = a_{12} + a_{22} \implies a_{11} = a_{22} \tag{2} \] - From the third element: \[ a_{21} + 2a_{22} = 2a_{11} + a_{21} \implies 2a_{22} = 2a_{11} \implies a_{22} = a_{11} \tag{3} \] - From the fourth element: \[ a_{21} + a_{22} = 2a_{12} + a_{22} \implies a_{21} = 2a_{12} \tag{4} \] 5. **Substitute and Simplify**: From equation (1), we have: \[ a_{21} = 2a_{12} \] From equation (2), we have: \[ a_{11} = a_{22} \] 6. **Find the Required Expression**: We need to compute: \[ \frac{a_{12}}{a_{21}} + \frac{a_{11}}{a_{22}} \] Substituting \(a_{21} = 2a_{12}\) and \(a_{11} = a_{22}\): \[ \frac{a_{12}}{2a_{12}} + \frac{a_{11}}{a_{11}} = \frac{1}{2} + 1 = \frac{1}{2} + \frac{2}{2} = \frac{3}{2} \] ### Final Answer: The value of \(\frac{a_{12}}{a_{21}} + \frac{a_{11}}{a_{22}}\) is \(\frac{3}{2}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

For an increasing G.P. a_(1), a_(2), a_(3),.....a_(n), " If " a_(6) = 4a_(4), a_(9) - a_(7) = 192 , then the value of sum_(l=1)^(oo) (1)/(a_(i)) is

If A_(1),A_(2),A_(3),...,A_(n),a_(1),a_(2),a_(3),...a_(n),a,b,c in R show that the roots of the equation (A_(1)^(2))/(x-a_(1))+(A_(2)^(2))/(x-a_(2))+(A_(3)^(2))/(x-a_(3))+…+(A_(n)^(2))/(x-a_(n)) =ab^(2)+c^(2) x+ac are real.

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If the points (a_(1),b_(1))m(a_(2),b_(2))" and " (a_(1)-a_(2),b_(2)-b_(2)) are collinear, then prove that a_(1)/a_(2)=b_(1)/b_(2)

If a_(1)gt0 for all i=1,2,…..,n . Then, the least value of (a_(1)+a_(2)+……+a_(n))((1)/(a_(1))+(1)/(a_(2))+…+(1)/(a_(n))) , is

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

A_(1) and A_(2) are two vectors such that |A_(1)| = 3 , |A_(2)| = 5 and |A_(1)+A_(2)| = 5 the value of (2A_(1)+3A_(2)).(2A_(1)-2A_(2)) is

let A ={{:({:(a_(11),a_(12)),(a_(21),a_(22)):}):a_(ij){0,1,2} and a_(11)=a_(22)} then the number of singular matrices in set A is

If a_(1),a_(2),a_(3),a_(4) and a_(5) are in AP with common difference ne 0, find the value of sum_(i=1)^(5)a_(i) " when " a_(3)=2 .