Home
Class 12
MATHS
Let |A|=1, |vecb|=4 and veca xxvecr +vec...

Let `|A|=1, |vecb|=4` and `veca xxvecr +vecb=vecr`. If the projection of `vecr` along `veca` is 2, then the projection of `vecr` along `vecb` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given information and properties of vectors. ### Step 1: Understand the Given Information We have: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 4\) - \(\vec{a} \times \vec{r} + \vec{b} = \vec{r}\) - The projection of \(\vec{r}\) along \(\vec{a}\) is 2. ### Step 2: Rearranging the Vector Equation From the equation \(\vec{a} \times \vec{r} + \vec{b} = \vec{r}\), we can rearrange it to find \(\vec{r}\): \[ \vec{r} = \vec{a} \times \vec{r} + \vec{b} \] ### Step 3: Taking the Dot Product with \(\vec{a}\) Taking the dot product of both sides with \(\vec{a}\): \[ \vec{a} \cdot \vec{r} = \vec{a} \cdot (\vec{a} \times \vec{r}) + \vec{a} \cdot \vec{b} \] Since \(\vec{a} \cdot (\vec{a} \times \vec{r}) = 0\) (the dot product of a vector with a perpendicular vector is zero), we have: \[ \vec{a} \cdot \vec{r} = \vec{a} \cdot \vec{b} \] ### Step 4: Using the Projection Information We know that the projection of \(\vec{r}\) along \(\vec{a}\) is 2, which means: \[ \vec{a} \cdot \vec{r} = 2 \] Thus, we can conclude: \[ \vec{a} \cdot \vec{b} = 2 \] ### Step 5: Finding the Projection of \(\vec{r}\) Along \(\vec{b}\) The projection of \(\vec{r}\) along \(\vec{b}\) is given by the formula: \[ \text{Projection of } \vec{r} \text{ along } \vec{b} = \frac{\vec{r} \cdot \vec{b}}{|\vec{b}|} \] We need to find \(\vec{r} \cdot \vec{b}\). ### Step 6: Expressing \(\vec{r}\) From our rearranged equation, we can express \(\vec{r}\) as: \[ \vec{r} = \vec{a} \times \vec{r} + \vec{b} \] Substituting \(\vec{b}\) into the projection formula: \[ \vec{r} \cdot \vec{b} = (\vec{a} \times \vec{r} + \vec{b}) \cdot \vec{b} \] This simplifies to: \[ \vec{r} \cdot \vec{b} = \vec{a} \times \vec{r} \cdot \vec{b} + |\vec{b}|^2 \] Since \(\vec{a} \times \vec{r} \cdot \vec{b} = 0\) (as \(\vec{a} \times \vec{r}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\)), we have: \[ \vec{r} \cdot \vec{b} = |\vec{b}|^2 = 4^2 = 16 \] ### Step 7: Calculating the Projection Now we can calculate the projection: \[ \text{Projection of } \vec{r} \text{ along } \vec{b} = \frac{16}{|\vec{b}|} = \frac{16}{4} = 4 \] ### Final Answer The projection of \(\vec{r}\) along \(\vec{b}\) is **4**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the projection of vecA on vecB ?

What is the projection of vecA on vecB ?

The projection vector of veca" on "vecb is

Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 and |vecc|=3. If the projection of vecb along veca is double of the projection of vecc along veca and vecb, vecc are perpendicular to each other, then the value of (|veca-vecb+2vecc|^(2))/(2) is equal to

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr , then the value of [(veca, vecb, vecc)] is

If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr , then the value of veca.(vecbxxvecc) is…… .

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2 , then (a)vecr= 2/3(veca+ veca xx vecb) (b) vecr= 1/3(veca+ veca xx vecb) (c) vecr= 2/3(veca- veca xx vecb) (d) vecr= 1/3(-veca+ veca xx vecb)

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc) is