Home
Class 12
MATHS
The integral I=int2^((2^(x)+x))dx=lambda...

The integral `I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C` (where, C is the constant of integration). Then the value of `sqrtlambda` is equal to

A

`(1)/(ln4)`

B

`(1)/((ln2)^(2))`

C

`(1)/(ln2)`

D

`(1)/((ln 4)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int 2^{2^x + x} \, dx \) and find the value of \( \sqrt{\lambda} \) where \( I = \lambda \cdot 2^{2x} + C \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int 2^{2^x + x} \, dx \] We can rewrite the integrand: \[ 2^{2^x + x} = 2^{2^x} \cdot 2^x \] Thus, we have: \[ I = \int 2^{2^x} \cdot 2^x \, dx \] ### Step 2: Substitution Let \( t = 2^x \). Then, the derivative \( dt = 2^x \ln(2) \, dx \) implies: \[ dx = \frac{dt}{t \ln(2)} \] Now substituting \( t \) into the integral: \[ I = \int t^2 \cdot \frac{dt}{t \ln(2)} = \frac{1}{\ln(2)} \int t \, dt \] ### Step 3: Integrate Now we can integrate: \[ \int t \, dt = \frac{t^2}{2} + C \] Thus, substituting back: \[ I = \frac{1}{\ln(2)} \cdot \left( \frac{t^2}{2} + C \right) = \frac{1}{2 \ln(2)} t^2 + C \] Substituting \( t = 2^x \): \[ I = \frac{1}{2 \ln(2)} (2^x)^2 + C = \frac{1}{2 \ln(2)} \cdot 2^{2x} + C \] ### Step 4: Compare with Given Form We are given that: \[ I = \lambda \cdot 2^{2x} + C \] From our integration, we have: \[ I = \frac{1}{2 \ln(2)} \cdot 2^{2x} + C \] Comparing both expressions, we find: \[ \lambda = \frac{1}{2 \ln(2)} \] ### Step 5: Find \( \sqrt{\lambda} \) Now, we need to find \( \sqrt{\lambda} \): \[ \sqrt{\lambda} = \sqrt{\frac{1}{2 \ln(2)}} \] This can be simplified as: \[ \sqrt{\lambda} = \frac{1}{\sqrt{2 \ln(2)}} \] ### Final Answer Thus, the value of \( \sqrt{\lambda} \) is: \[ \sqrt{\lambda} = \frac{1}{\sqrt{2 \ln(2)}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

If f(x)=sinx, g(x)=cosx and h(x)=cos(cosx), then the integral I=int f(g(x)).f(x).h(x)dx simplifies to -lambda sin^(2)(cosx)+C (where, C is the constant of integration). The value of lambda is equal to

If the integral I= ∫e^(5ln x)(x^(6)+1)^(-1)dx=lamdaln (x^(6)+1)+C , (where C is the constant of integration) then the value of (1)/(lambda) is

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

The integral I=int((1)/(x.secx)-ln(x^(sinx))dx simplifies to (where, c is the constant of integration)

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be