Home
Class 12
MATHS
The value of int(pi)^(2pi)[2sinx]dx is e...

The value of `int_(pi)^(2pi)[2sinx]dx` is equal to (where `[.]` represents the greatest integer function)

A

`-pi`

B

`(5pi)/(3)`

C

`(-5pi)/(3)`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\pi}^{2\pi} 2\sin x \, dx \) and find the value of the greatest integer function, we will follow these steps: ### Step 1: Evaluate the Integral We start by calculating the integral \( \int_{\pi}^{2\pi} 2\sin x \, dx \). \[ \int 2\sin x \, dx = -2\cos x + C \] ### Step 2: Apply the Limits Now we will apply the limits from \( \pi \) to \( 2\pi \): \[ \int_{\pi}^{2\pi} 2\sin x \, dx = \left[-2\cos x\right]_{\pi}^{2\pi} \] Calculating the values at the limits: 1. At \( x = 2\pi \): \[ -2\cos(2\pi) = -2(1) = -2 \] 2. At \( x = \pi \): \[ -2\cos(\pi) = -2(-1) = 2 \] Now substituting these values into the integral: \[ \int_{\pi}^{2\pi} 2\sin x \, dx = -2 - 2 = -4 \] ### Step 3: Simplify the Result Now we simplify the result: \[ \int_{\pi}^{2\pi} 2\sin x \, dx = -4 \] ### Step 4: Apply the Greatest Integer Function Now we need to apply the greatest integer function \( [x] \) to our result: \[ \left[-4\right] = -4 \] ### Final Answer Thus, the value of \( \int_{\pi}^{2\pi} 2\sin x \, dx \) is equal to \( -4 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest integer function)

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

The value of int_0^(12pi) ([sint]+[-sint])dt is equal to (where [.] denotes the greatest integer function )

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

The value of int_(-pi)^(pi) sinx f(cosx)dx is

The value of int_0^(2pi)[2sinx]dx ,w h e r e[dot] represents the greatest integral function, is (a) (-5pi)/3 (b) -pi (c) (5pi)/3 (d) -2pi

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

The integral int_(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (where [.] represents the greatest integer function)