Home
Class 12
MATHS
Consider the function f(x)=(sin 2x)^(tan...

Consider the function `f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4)`. The value of `f((pi)/(4))` such that f is continuous at `x=(pi)/(4)` is

A

`sqrte`

B

`1//sqrte`

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the function \( f(x) = (\sin 2x)^{\tan^2 2x} \) at \( x = \frac{\pi}{4} \) such that \( f \) is continuous at that point, we will follow these steps: ### Step 1: Evaluate \( f\left(\frac{\pi}{4}\right) \) First, we substitute \( x = \frac{\pi}{4} \) into the function: \[ f\left(\frac{\pi}{4}\right) = (\sin(2 \cdot \frac{\pi}{4}))^{\tan^2(2 \cdot \frac{\pi}{4})} \] Calculating \( 2 \cdot \frac{\pi}{4} \): \[ 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] Now, substituting into the sine and tangent functions: \[ f\left(\frac{\pi}{4}\right) = (\sin(\frac{\pi}{2}))^{\tan^2(\frac{\pi}{2})} \] We know that: \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \tan\left(\frac{\pi}{2}\right) = \infty \] Thus, we have: \[ f\left(\frac{\pi}{4}\right) = 1^{\infty} \] This expression \( 1^{\infty} \) is indeterminate, so we need to analyze the limit as \( x \) approaches \( \frac{\pi}{4} \). ### Step 2: Rewrite the function To resolve the indeterminate form, we can take the natural logarithm: Let \( y = f(x) = (\sin 2x)^{\tan^2 2x} \). Taking the natural logarithm: \[ \ln y = \tan^2(2x) \cdot \ln(\sin(2x)) \] ### Step 3: Analyze the limit We need to find the limit of \( \ln y \) as \( x \) approaches \( \frac{\pi}{4} \): \[ \lim_{x \to \frac{\pi}{4}} \ln y = \lim_{x \to \frac{\pi}{4}} \tan^2(2x) \cdot \ln(\sin(2x)) \] Substituting \( 2x \) as \( \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{4}} \tan^2(2x) = \tan^2\left(\frac{\pi}{2}\right) = \infty \] And: \[ \lim_{x \to \frac{\pi}{4}} \ln(\sin(2x)) = \ln(\sin(\frac{\pi}{2})) = \ln(1) = 0 \] This gives us the form \( \infty \cdot 0 \), which is still indeterminate. ### Step 4: Use L'Hôpital's Rule To resolve this, we can rewrite it as: \[ \lim_{x \to \frac{\pi}{4}} \frac{\ln(\sin(2x))}{\cot^2(2x)} \] Both the numerator and denominator approach \( 0 \) as \( x \to \frac{\pi}{4} \). We can apply L'Hôpital's Rule: Differentiate the numerator and denominator: 1. The derivative of \( \ln(\sin(2x)) \) is: \[ \frac{2 \cos(2x)}{\sin(2x)} = 2 \cot(2x) \] 2. The derivative of \( \cot^2(2x) \) is: \[ -4 \cot(2x) \csc^2(2x) \] Now applying L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{4}} \frac{2 \cot(2x)}{-4 \cot(2x) \csc^2(2x)} = \lim_{x \to \frac{\pi}{4}} \frac{-1}{2 \csc^2(2x)} \] As \( x \to \frac{\pi}{4} \): \[ \csc^2(2x) = \csc^2\left(\frac{\pi}{2}\right) = 1 \] Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} \ln y = -\frac{1}{2} \] ### Step 5: Solve for \( y \) Exponentiating both sides gives: \[ y = e^{-\frac{1}{2}} \] ### Final Answer Thus, the value of \( f\left(\frac{\pi}{4}\right) \) such that \( f \) is continuous at \( x = \frac{\pi}{4} \) is: \[ \boxed{e^{-\frac{1}{2}}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(sqrt(2)cosx-1)/(cotx-1) , x!=pi/4 . Find the value of f(pi/4) so that f(x) becomes continuous at x=pi//4 .

If f(x)=(sqrt(2)cosx-1)/(cotx-1),x!=pi/4dot Find the value of f(pi/4) so that f(x) becomes continuous at x=pi/4dot

Let f(x)= {{:(,(tanx-cotx)/(x-(pi)/(4)),x ne (pi)/(4)),(,a,x=(pi)/(4)):} The value of a so that f(x) is a continous at x=pi//4 is.

The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the interval (0,pi/2) \ i s

If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is continuous at x=(pi)/(4) then the value of k is

If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4)):} is continuous at x=(pi)/(4) , then the value of k is

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

f(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

Examination the function f(x) given by f(x)={((cosx)/(pi/2-x) ,, x != pi/2),(1 ,, x = pi/2):} ; for continuity at x=pi/2