Home
Class 12
MATHS
A tangent having slope of -4/3 to the ...

A tangent having slope of `-4/3` to the ellipse `(x^2)/(18)+(y^2)/(32)=1` intersects the major and minor axes at points `A` and `B ,` respectively. If `C` is the center of the ellipse, then find area of triangle `A B Cdot`

A

48 sq. units

B

9 sq. units

C

24 sq. units

D

16 sq. units

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a tangent having a slope of -4/3 to the ellipse x^2/18 + y^2/32 = 1 intersects the major and minor axes in points A and B respectively, then the area of DeltaOAB is equal to (A) 12 sq. untis (B) 24 sq. units (C) 48 sq. units (D) 64 sq. units

Normal to the ellipse (x^2)/(64)+(y^2)/(49)=1 intersects the major and minor axes at Pa n dQ , respectively. Find the locus of the point dividing segment P Q in the ratio 2:1.

If the normal at any point P on the ellipse cuts the major and minor axes in G and g respectively and C be the centre of the ellipse, then

If normal at any poin P on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 (agtbgt0) meets the major and minor axes at Q and R, respectively, so that 3PQ=2PR, then find the eccentricity of ellipse

tangent drawn to the ellipse x^2/a^2+y^2/b^2=1 at point 'P' meets the coordinate axes at points A and B respectively.Locus of mid-point of segment AB is

The tangent at point P on the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 cuts the minor axis in Q and PR is drawn perpendicular to the minor axis. If C is the centre of the ellipse, then CQ*CR =

If a tangent to the ellipse x^2/a^2+y^2/b^2=1 , whose centre is C, meets the major and the minor axes at P and Q respectively then a^2/(CP^2)+b^2/(CQ^2) is equal to

A normal inclined at 45^@ to the axis of the ellipse x^2 /a^2 + y^2 / b^2 = 1 is drawn. It meets the x-axis & the y-axis in P & Q respectively. If C is the centre of the ellipse, show that the area of triangle CPQ is (a^2 - b^2)^2/(2(a^2 +b^2)) sq units

If normal at any point P to ellipse (x^2)/(a^2) + (y^2)/(b^2) = 1(a > b) meet the x & y axes at A and B respectively. Such that (PA)/(PB) = 3/4 , then eccentricity of the ellipse is:

The given equation of the ellipse is (x^(2))/(81) + (y^(2))/(16) =1 . Find the length of the major and minor axes. Eccentricity and length of the latus rectum.