Home
Class 12
MATHS
If (1+x+x^(2))^(25)=a(0)+a(1)x+a(2)x^(2)...

If `(1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50)`
then the value of
`a_(0)+a_(2)+a_(4)+…………+a_(50)` is

A

odd and of the form 3n

B

odd and of the form `(3n-1)`

C

odd and of the form `(3n+1)`

D

even

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_0 + a_2 + a_4 + \ldots + a_{50} \) from the expansion of \( (1 + x + x^2)^{25} \). ### Step 1: Understand the expression The expression \( (1 + x + x^2)^{25} \) can be expanded using the binomial theorem, which gives us coefficients \( a_n \) for each term \( x^n \). ### Step 2: Evaluate at \( x = 1 \) First, let's evaluate the expression at \( x = 1 \): \[ (1 + 1 + 1^2)^{25} = 3^{25} \] This gives us: \[ a_0 + a_1 + a_2 + \ldots + a_{50} = 3^{25} \] ### Step 3: Evaluate at \( x = -1 \) Next, we evaluate the expression at \( x = -1 \): \[ (1 - 1 + (-1)^2)^{25} = 1^{25} = 1 \] This gives us: \[ a_0 - a_1 + a_2 - a_3 + \ldots + a_{50} = 1 \] ### Step 4: Set up the equations Now we have two equations: 1. \( a_0 + a_1 + a_2 + \ldots + a_{50} = 3^{25} \) (Equation 1) 2. \( a_0 - a_1 + a_2 - a_3 + \ldots + a_{50} = 1 \) (Equation 2) ### Step 5: Add the equations Adding Equation 1 and Equation 2: \[ (a_0 + a_1 + a_2 + \ldots + a_{50}) + (a_0 - a_1 + a_2 - a_3 + \ldots + a_{50}) = 3^{25} + 1 \] This simplifies to: \[ 2(a_0 + a_2 + a_4 + \ldots + a_{50}) = 3^{25} + 1 \] ### Step 6: Solve for \( a_0 + a_2 + a_4 + \ldots + a_{50} \) Now, divide both sides by 2: \[ a_0 + a_2 + a_4 + \ldots + a_{50} = \frac{3^{25} + 1}{2} \] ### Step 7: Final result Thus, the value of \( a_0 + a_2 + a_4 + \ldots + a_{50} \) is: \[ \frac{3^{25} + 1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If (1+ x + x ^(2) "_____"x ^(100))(1- x+x ^(2) - x ^(3) +"____"-x ^(150)) =a _(0) + a_(1) x + a_(2)x^2 + "___"+a _(250)x ^(250) Then the value of a _(0) + a _(2) + a_(4) +"____"+ a_(250) is equal to "____".

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+3x-2x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2).+…+a_(20)x^(20) then prove that a_(0)+a_(1)+a_(2)+……+a_(20)=2^(10)

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-