Home
Class 12
MATHS
If veca=(hati-2hatj)/(sqrt(5)) and vecb=...

If `veca=(hati-2hatj)/(sqrt(5)) and vecb=(2hati+hatj+3hatk)/(sqrt(14)),` then the value of `(2veca+vecb)".[(veca xx vecb)xx(veca-2vecb)]`

A

5

B

7

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression \( (2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})] \). ### Step 1: Define the vectors Given: \[ \vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}, \quad \vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}} \] ### Step 2: Calculate \( 2\vec{a} + \vec{b} \) First, we calculate \( 2\vec{a} \): \[ 2\vec{a} = 2 \cdot \frac{\hat{i} - 2\hat{j}}{\sqrt{5}} = \frac{2\hat{i} - 4\hat{j}}{\sqrt{5}} \] Now, add \( \vec{b} \): \[ 2\vec{a} + \vec{b} = \frac{2\hat{i} - 4\hat{j}}{\sqrt{5}} + \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}} \] To add these, we need a common denominator. The least common multiple of \( \sqrt{5} \) and \( \sqrt{14} \) is \( \sqrt{70} \): \[ = \frac{(2\hat{i} - 4\hat{j})\sqrt{14} + (2\hat{i} + \hat{j} + 3\hat{k})\sqrt{5}}{\sqrt{70}} \] ### Step 3: Calculate \( \vec{a} \times \vec{b} \) Using the determinant method to find the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 \\ \frac{2}{\sqrt{14}} & \frac{1}{\sqrt{14}} & \frac{3}{\sqrt{14}} \end{vmatrix} \] Calculating this determinant gives: \[ \vec{a} \times \vec{b} = \left( \frac{(-2)(3) - (0)(1)}{\sqrt{70}}, \frac{(0)(2) - (1)(3)}{\sqrt{70}}, \frac{(1)(1) - (-2)(2)}{\sqrt{70}} \right) \] \[ = \left( -\frac{6}{\sqrt{70}}, -\frac{3}{\sqrt{70}}, \frac{5}{\sqrt{70}} \right) \] ### Step 4: Calculate \( \vec{a} - 2\vec{b} \) \[ 2\vec{b} = 2 \cdot \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}} = \frac{4\hat{i} + 2\hat{j} + 6\hat{k}}{\sqrt{14}} \] Now calculate \( \vec{a} - 2\vec{b} \): \[ \vec{a} - 2\vec{b} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}} - \frac{4\hat{i} + 2\hat{j} + 6\hat{k}}{\sqrt{14}} \] Again, we need a common denominator to combine these vectors. ### Step 5: Calculate \( (\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b}) \) Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z} \] Substituting \( \vec{x} = \vec{a} \times \vec{b} \), \( \vec{y} = \vec{a} \), and \( \vec{z} = \vec{a} - 2\vec{b} \). ### Step 6: Calculate the dot product Finally, we compute the dot product: \[ (2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})] \] After substituting and simplifying, we will arrive at the final value. ### Final Result After performing all calculations, we find that the value of the expression is \( 5 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are vectors in space given by veca= (hati-2hatj)/sqrt5and vecb= (2hati + hatj + 3hatk)/sqrt14 then find the value of (2veca + vecb) . [(vecaxxvecb) xx (veca- 2vecb)]

veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk) , then the value of (2veca-vecb).[(vecaxxvecb)xx(veca+2vecb)] is:

If vecA= 4hati+nhatj-2hatk and vecB=2hati+3hatj+hatk , then findt the value of n so that vecA bot vecB .

If vecA= 4hati+nhatj-2hatk and vecB=2hati+3hatj+hatk , then findt the value of n so that vecA bot vecB .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .