Home
Class 12
MATHS
Let f(x)=x^(2)-4x-3, x gt2 and g(x) be t...

Let `f(x)=x^(2)-4x-3, x gt2` and `g(x)` be the inverse of `f(x)`. Then the value fo `(g')`, where `f(x)=2`, is (here, g' represents the first derivative of g)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)' must be

Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of g' (-4):

If f (x) = x^(2) +x ^(4) +log x and g is the inverse of f, then g'(2) is:

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

If y=f(x)=x^3+x^5 and g is the inverse of f find g^(prime)(2)

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4