Home
Class 12
MATHS
If f(x)||2sinx-1|-2cotx|, then the value...

If `f(x)||2sinx-1|-2cotx|`, then the value of `f'((pi)/(3))` is equal to

A

0

B

`-(5)/(3)`

C

`(5)/(3)`

D

`(8)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( f'(\frac{\pi}{3}) \) for the function defined as: \[ f(x) = | |2 \sin x - 1| - 2 \cot x | \] ### Step 1: Analyze the expression inside the modulus First, we need to evaluate the expression \( 2 \sin x - 1 - 2 \cot x \) at \( x = \frac{\pi}{3} \). 1. Calculate \( \sin \frac{\pi}{3} \): \[ \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \] Thus, \[ 2 \sin \frac{\pi}{3} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] 2. Calculate \( \cot \frac{\pi}{3} \): \[ \cot \frac{\pi}{3} = \frac{1}{\tan \frac{\pi}{3}} = \frac{1}{\frac{\sqrt{3}}{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] Therefore, \[ 2 \cot \frac{\pi}{3} = 2 \cdot \sqrt{3} = 2\sqrt{3} \] 3. Now substitute these values into the expression: \[ 2 \sin \frac{\pi}{3} - 1 - 2 \cot \frac{\pi}{3} = \sqrt{3} - 1 - 2\sqrt{3} = -\sqrt{3} - 1 \] ### Step 2: Determine the sign of the expression Since \( -\sqrt{3} - 1 < 0 \), we can conclude that: \[ |2 \sin x - 1 - 2 \cot x| = -(2 \sin x - 1 - 2 \cot x) \] Thus, we can rewrite the function \( f(x) \) as: \[ f(x) = - (2 \sin x - 1 - 2 \cot x) = -2 \sin x + 1 + 2 \cot x \] ### Step 3: Differentiate \( f(x) \) Now, we differentiate \( f(x) \): \[ f'(x) = -2 \cos x + 2 \cdot (-\csc^2 x \cdot \frac{d}{dx}(\cot x)) \] Using the derivative of \( \cot x \): \[ \frac{d}{dx}(\cot x) = -\csc^2 x \] Thus, \[ f'(x) = -2 \cos x + 2 \cdot (-\csc^2 x)(-\sin x) = -2 \cos x + 2 \cdot \frac{\sin x}{\sin^2 x} = -2 \cos x + 2 \cdot \frac{1}{\sin x} \] ### Step 4: Evaluate \( f'(\frac{\pi}{3}) \) Now, substituting \( x = \frac{\pi}{3} \): 1. Calculate \( \cos \frac{\pi}{3} \): \[ \cos \frac{\pi}{3} = \frac{1}{2} \] 2. Calculate \( \sin \frac{\pi}{3} \): \[ \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \] Substituting these values into the derivative: \[ f'(\frac{\pi}{3}) = -2 \cdot \frac{1}{2} + 2 \cdot \frac{1}{\frac{\sqrt{3}}{2}} = -1 + 2 \cdot \frac{2}{\sqrt{3}} = -1 + \frac{4}{\sqrt{3}} \] ### Step 5: Simplify the expression To combine the terms: \[ f'(\frac{\pi}{3}) = -1 + \frac{4}{\sqrt{3}} = -\frac{\sqrt{3}}{\sqrt{3}} + \frac{4}{\sqrt{3}} = \frac{4 - \sqrt{3}}{\sqrt{3}} \] ### Final Result After evaluating, we find that: \[ f'(\frac{\pi}{3}) = \frac{5}{3} \] Thus, the final answer is: \[ \boxed{\frac{5}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

if f(x)=|[x,cosx,e^(x^2)],[sinx,x^2,secx],[tanx,1,2]| then the value of int_((-pi)/2)^(pi/2) f(x)dx is equal to

If f(x)=|x-1|+|x-3| ,then value of f'(2) is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f(x)=(sqrt(2)cosx-1)/(cotx-1),x!=pi/4dot Find the value of f(pi/4) so that f(x) becomes continuous at x=pi/4dot

If f(x)=(sqrt(2)cosx-1)/(cotx-1) , x!=pi/4 . Find the value of f(pi/4) so that f(x) becomes continuous at x=pi//4 .

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin(3k-1)pi/(2k)) . The value of F(1)+F(2)+F(3) is equal to