Home
Class 12
MATHS
If f(x)=(x^(2)-[x^(2)])/(1+x^(2)-[x^(2)]...

If `f(x)=(x^(2)-[x^(2)])/(1+x^(2)-[x^(2)])` (where `[.]` represents the greatest integer part of x), then the range of `f(x)` is

A

`[0, 1)`

B

`(-1, 1)`

C

`(0, oo)`

D

`[0, (1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x^2 - [x^2]}{1 + x^2 - [x^2]} \), where \([x^2]\) denotes the greatest integer part of \(x^2\), we will follow these steps: ### Step 1: Understand the function The term \([x^2]\) represents the greatest integer less than or equal to \(x^2\). Thus, we can express \(x^2\) as: \[ x^2 = n + \{x^2\} \] where \(n = [x^2]\) is an integer and \(\{x^2\} = x^2 - n\) is the fractional part of \(x^2\). ### Step 2: Rewrite the function Substituting \(x^2\) into the function, we get: \[ f(x) = \frac{\{x^2\}}{1 + \{x^2\}} \] This is because \(x^2 - [x^2] = \{x^2\}\) and \(1 + x^2 - [x^2] = 1 + \{x^2\}\). ### Step 3: Analyze the fractional part The fractional part \(\{x^2\}\) varies between \(0\) and \(1\) (inclusive of \(0\) and exclusive of \(1\)). Therefore, we can denote: \[ \{x^2\} \in [0, 1) \] ### Step 4: Determine the range of \(f(x)\) Now we need to analyze the function: \[ f(x) = \frac{y}{1 + y} \] where \(y = \{x^2\}\) and \(y \in [0, 1)\). To find the range of \(f(x)\), we will evaluate the limits as \(y\) approaches \(0\) and \(1\): - When \(y = 0\): \[ f(x) = \frac{0}{1 + 0} = 0 \] - As \(y\) approaches \(1\): \[ f(x) = \frac{y}{1 + y} \to \frac{1}{2} \quad \text{(as } y \to 1 \text{, but it never actually reaches 1)} \] ### Step 5: Conclusion on the range Thus, the range of \(f(x)\) is: \[ [0, \frac{1}{2}) \] ### Final Answer The range of \(f(x)\) is \([0, \frac{1}{2})\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x^(2)-[x^(2)])/(x^(2)-[x^(2)-2]) (where, [.] represents the greatest integer part of x), then the range of f(x) is

If f(x)=(x^(3)+x+1)tan(pi[x]) (where, [x] represents the greatest integer part of x), then

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

If f(x) = [x^(-2) [x^(2)]] , (where [*] denotes the greatest integer function) x ne 0 , then incorrect statement